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Summary
During their lifetime, plants need to adapt to various stimuli originating from the abiotic and 

biotic environment. One major biotic stress factor is the attack of herbivorous insects feeding on 

the plant. During the feeding process wounding of plant tissue and contact with elicitors in 

insect’s oral secretion (OS) occurs. The early events upon perception of these stimuli are still 

poorly understood. Elevations in cytosolic calcium are one of these early events, which activate 

the downstream signaling network. To reach this a proper decoding of calcium signals by for 

example different calcium sensor proteins is important. In this study it was demonstrated that in 

Arabidopsis thaliana, several members of the calmodulin-like proteins (CMLs), one group of 

calcium sensors, are induced upon OS of the generalist herbivore Spodoptera littoralis. The 

expression patterns upon OS treatment can be classified into two groups. While CMLs 11, 12, 

16, 37 show an early and transient expression, the expression of CMLs 9, 17, and 23 starts late 

and shows a sustained level over a longer time. 

In herbivory, CML37 is strongly upregulated upon mechanical wounding, but responds 

additionally to elicitors in OS and to jasmonic acid (JA)-precursor cis-OPDA (cis-(+)-12-Oxo-

Phytodienoic Acid). Upon stress stimuli, CML37 binds to cytosolic free calcium and undergoes a 

conformational change characterized by increasing -helical content and exposure of 

hydrophobic regions. Knock-out mutation of CML37 increases plants susceptibility to herbivore 

feeding indicating that CML37 acts as a positive defense regulator. CML37 does not influence 

the content of glucosinolates or flavonoids, while the elevation of phytohormones cis-OPDA and 

the active conjugate JA-Ile is positively influenced. Here CML37 regulates JA-Ile production by 

modulating JAR1 activity. Lower JA-Ile levels cause lower expression of anti-insect JA-

responsive genes. These results indicate that CML37 is involved in herbivore defense where it 

regulates the jasmonate pathway. Additionally it was demonstrated that CML37 plays an 

essential role in the connection of the early event of cytosolic calcium elevations with this 

jasmonate pathway.

Beside herbivore defense, CML37 is also involved in ABA signaling during drought stress. 

Mutation of CML37 results in drastically reduced survival of plants upon different periods of 

drought treatment, indicating that CML37 acts as a positive regulator in drought-induced ABA 
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signaling. Summarizing, all these results strongly suggest that calcium sensor proteins of the 

CML-family are involved in response to different abiotic as well as biotic environmental stimuli. 

Plant defense is a complex network of different pathways. Next to the jasmonate pathway, also 

the accumulation of -amino butyric acid (GABA) is calcium-mediated. Upon elevation of 

cytosolic calcium and binding by calmodulin (CaM), the glutamate decarboxylases (GADs) are 

activated and GABA produced. It was demonstrated that GABA is accumulated upon wounding 

of plant tissue by MecWorm treatment, where the accumulation was highest, and Spodoptera 

littoralis feeding. Mutation of gad12 in Arabidopsis caused very low levels of GABA, while an 

additional knock-out of gaba-t (pop2-5) generated a mutant accumulating high levels of GABA 

over time. Higher level of GABA in the gad12xgaba-t plant or in artificial diet significantly 

reduced growth of Spodoptera littoralis larvae. This result indicates that accumulation of GABA 

upon herbivore feeding acts as a general wounding-induced defense. Local wounding of plant 

tissue induced an accumulation of GABA in local and also in systemic non-wounded leaves, 

suggesting a Ca2+-dependent activation of GADs in systemic leaves. GABA elevation was not 

induced upon coronalon treatment, indicating a JA-independent pathway. Summarizing, the 

results show that herbivore-induced accumulation of GABA is a wounding-induced, JA-

independent and systemic plant defense.

In another set of experiments it was demonstrated that upon wounding, also the JA-precursor 

OPC-8:0 (analyzed by an 7F-OPC-8:0 analouge) was transported to systemic, non-wounded 

leaves. Moreover, it was shown that the “jasmonate-induced jasmonates hypothesis” is only valid 

for the activation of JA-biosynthesis genes after jasmonate application while the level of 

endogenous jasmonates is not changing. 
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Zusammenfassung
Als sessile Lebewesen müssen Pflanzen sich ständig an wechselnde Bedingungen ihres 

abiotischen und biotischen Umfeldes anpassen. Dabei ist der Angriff durch herbivore Insekten 

ein bedeutender Stressfaktor für die Pflanze. Neben einer massiven Verwundung des Gewebes, 

kommt die Pflanze beim Angriff von Herbivoren auch mit dessen Reguritat (OS, oral secretion)

in Berührung, welches eine Vielzahl von Elizitoren enthält. Die frühen Abläufe in Erkennung 

und Weiterleitung des wahrgenommenen Signals sind noch nicht vollständig untersucht. Die 

Erhöhung des cytosolischen Calcium Levels spielt dabei jedoch eine wichtige Rolle und ist in 

der Lage nachfolgende  Signalwege zu aktivieren. Um eine, dem Stimulus entsprechende,  

spezifische Antwort zu erzeugen, muss das entstandene Calcium Signal entschlüsselt werden. 

Dies geschieht unter anderem durch verschiedene Calcium Sensoren. Die Familie der 

Calmodulin-like proteins (CMLs), den Calmodulinen ähnliche Proteine, sind eine Gruppe dieser 

Calcium Sensoren in Arabidopsis thaliana. Es wurde gezeigt, dass zahlreiche Mitglieder dieser 

Familie durch das Reguritat von Spodoptera littoralis induziert werden. Dabei weisen die 

Expressionsmuster dieser CMLs verschiedene Verläufe auf. Während die Transkription der 

CMLs 11, 12, 16 und 37 schnell hochreguliert wird und anschließend wieder abfällt, startet die 

Expression von CML  9, 17 und 23 viel später und hält länger an. 

Unter Herbivorbefall ist die Expression von CML37 stark induziert. Diese wird vorrangig durch 

die mechanische Verwundung des Pflanzengewebes ausgelöst, aber auch Elizitoren im Reguritat 

und die JA-Vorstufe cis-OPDA können eine Induktion bewirken. Nach erkennen eines 

Stresssignals bindet CML37 das frei gewordene cytosolische Calcium und durchläuft eine 

Konformationsänderung bei der sich der -helikale Gehalt des Proteins erhöht und hydrophobe 

Bereiche zugänglich werden um mit Interaktionspartnern in Kontakt zu treten. Ein knock-out von

CML37 bewirkt eine erhöhte Anfälligkeit von Arabidopsis gegenüber Herbivoren, was für eine 

Wirkung als positiver Regulator der Herbivorenabwehr spricht. CML37 hat keinen Einfluss auf 

den Gehalt von Sekundärmetaboliten wie Glucosinolate oder Flavonoide, aber die Akkumulation 

der Phytohormone cis-OPDA und JA-Ile werden positiv beeinflusst. Dabei reguliert CML37 die 

Produktion von JA-Ile durch Modulierung der Aktivität des beteiligten Enzyms JAR1. Die 

geringen Mengen an JA-Ile, welches das bioaktive Hormon ist, bewirken wiederum eine 

geringere Expression von anti-herbivoren Proteinen. Diese Ergebnisse verdeutlichen, dass 
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CML37 in die Herbivorenabwehr involviert ist und dabei den Jasmonatsignalweg reguliert. 

Zusätzlich konnte gezeigt werden, dass CML37 somit ein Bindeglied zwischen der Ausschüttung 

von cytosolischen Calcium und dem Jasmonatsignalweg ist.

Neben der Herbivorenabwehr ist CML37 auch in die Regulation von ABA unter 

Trockenheitsstress involviert. Mutation von CML37 bewirkt eine stärkere Anfälligkeit der 

Pflanzen gegenüber Trockenheit, was nach mehreren Trockenperioden zum Austrocknen der 

Pflanzen führt. Dies weist darauf hin, dass CML37 auch in der Trockenstress-induzierten 

Akkumulation von ABA als positiver Regulator wirkt. Zusammengefasst weisen diese 

Ergebnisse darauf hin, dass Calcium Sensoren der CML Familie in die Reaktion auf und 

Verarbeitung von abiotischen und biotischen Stressfaktoren involviert sind.

Die Abwehr von Pflanzen ist ein komplexes Netzwerk von verschiedenen Signalwegen. Neben 

den Jasmonatsignalweg ist auch die Akkumulation von GABA ein Calcium-abhängiger 

Vorgang. Nach dem Anstieg der freien, cytosolischen Calcium Konzentration und 

anschließender Bindung des Calciums durch Calmodulin werden die Glutamat-decarboxylasen 

aktiviert, welche Calmodulin-reguliert sind. Es konnte gezeigt werden, dass die Akkumulation 

von GABA vor allem durch die vom MecWorm verursachte, mechanische Verwundung der 

Pflanze induziert wird. Auch Frass durch die Larven von Spodoptera littoralis konnte die 

Akkumulation von GABA bewirken. Die Mutation von gad12 in Arabidopsis führte zu einer 

drastischen Reduzierung des GABA-Gehaltes der Pflanzen, während ein zusätzlicher knock-out

von gaba-t (pop2-5) eine Akkumulation von GABA in den Mutanten bewirkte. Der hohe Gehalt 

von GABA in den gad12xgab-t Mutanten und eine artifizielle Ernährung der Larven mit GABA-

angereicherten Futter führten zu einer signifikanten Reduzierung der Gewichtszunahme bei 

Spodoptera littoralis. Dieses Ergebnis verdeutlicht, dass die Akkumulation von GABA bei 

Herbivorenfrass in Arabidopsis eine generelle, durch Verwundung induzierte Abwehrreaktion 

ist. Eine lokale Verwundung der Pflanze konnte eine Akkumulation von GABA im lokalen 

sowie in nicht verwundeten, systemischen Blättern induzieren. Dies deutet auf eine durch 

Calciumsignale in den systemischen Blättern induzierte Aktivierung der GADs hin. Die 

Produktion von GABA ist unabhängig von Jasmonaten, was durch eine Behandlung mit 

Coronalon gezeigt werden konnte. Zusammenfassend ist die Akkumulation von GABA eine 
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durch Verwundung induzierte, JA-unabhängige und systemische Abwehrreaktion gegen 

Herbivoren. 

In weiteren unabhängigen Experimenten wurde die Dynamik der Akkumulation und 

Weiterleitung der Jasmonat-Vorstufe OPC-8:0 mit Hilfe eines markierten Analoges 7F-OPC-8:0 

untersucht. Nach lokaler Verwundung von Arabidopsis Pflanzen, wurde 7F-OPC-8:0 in 

systemische, nicht verwundete Blätter transportiert. Außerdem konnte in weiteren Experimenten 

gezeigt werden, dass die „Jasmonat-induzierte Jasmonatproduktion“ nur für die Aktivierung der 

JA-Biosynthese Gene gilt aber nicht für die Akkumulation von endogenen Jasmonaten.
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1 Introduction

1.1 Plant defense strategies against insect herbivory

During their lifespan, plants have to deal with a multitude of stress factors originating from the 

abiotic as well as the biotic environment. Main abiotic environmental cues influencing the plants 

performance and fitness include drought and salt stress, ozone and UV-radiation, cold stress and 

many others (Lawlor, 2011). Biotic stress factors originate from many different groups of 

organisms like pathogens, nematodes, microorganisms, and also from feeding insects. Given the 

fact that over 50 % of all insects show herbivorous feeding behavior, plants have to adapt to 

them by developing and modulating different defense strategies (Schoonhoven et al., 1998; Van 

Poecke, 2007). Attack of insects, especially with chewing feeding behavior, cause a massive loss 

of plant tissue and viability leading to low reproduction rate (Stowe et al., 2000). Attack of 

herbivorous insects combines different stress stimuli inducing plant defense. Perception of 

herbivory by the plant consists of recognition of wounding of plant tissue and of elicitors 

provided by the insect’s oral secretion (OS) (Maffei et al., 2004; Mithöfer et al., 2005; Mithöfer 

and Boland, 2008; Wu and Baldwin, 2010).

The plant defense activated upon herbivory, is a complex network of different pathways, which 

are constitutively expressed or induced upon stimuli perception. Both groups of defense 

pathways are composed of direct and indirect defenses (Howe and Jander, 2008). Direct defense 

compounds like glucosinolates or protease inhibitors directly influence the insects performance 

and feeding behavior, while indirect defenses like emission of volatile organic compounds 

(VOCs) after herbivore attack function as attractant for parasitic wasps which in turn predate on 

the attacker (Van Poecke et al., 2001; Van Poecke, 2007). While plants develop new defense 

compounds or mechanisms to enhance the resistance against herbivores, their attackers find new 

ways to bypass or detoxify these (Jander, 2014). Generalist herbivores are feeding on many 

different plant species and have to encounter different defenses, specialist insects are limited to a 

number of food plants and show a higher level of adaptation to the defense mechanism of these 

specific plants (Ali and Agrawal, 2012). For example Manduca sexta larvae feeding on tobacco 

plants show a high grade of adaptation to otherwise toxic levels of nicotine (Steppuhn et al.,

2004; Pluskota et al., 2007).



Introduction
 

2 
 

This work will focus on the interaction between the mouse-ear cress Arabidopsis thaliana

(Brassicaceae), a well-known model plant and the generalist herbivore Spodoptera littoralis (the 

Egyptian cotton leaf worm, Lepidoptera). Spodoptera littoralis is a major pest of cotton,

vegetables, flowers and crop plants and causes high loss of yield in agriculture 

(http://www.cabi.org/isc/datasheet/51070). Larvae of Spodoptera littoralis can be kept on a 

simple artificial diet (Bergomaz and Boppre, 1986), making them a good tool to study herbivory 

in the lab.

1.1.1 Mechanical defenses

The plant’s mechanical defenses are the first layer of defense that a herbivorous insect

encounters while feeding on them. In Arabidopsis thaliana, the major component contributing to 

its mechanical defenses are trichomes. These structures on the plant surface, which are formed 

by epidermal cells, show a high grade of branching. It was shown that trichomes negatively 

influence the herbivore feeding behavior via its effect on insect mobility (Reymond et al., 2004).

Additionally it was shown that in a population of Arabidopsis lyrata, plants lacking trichomes 

are more susceptible to herbivory than plants with higher trichome density (Løe et al., 2007).

The plant surface also harbors additional layers of mechanical defense in form of epicuticular 

waxes which are influencing insect’s feeding behavior and egg deposition (Blenn et al., 2012).

These mechanical barriers are thus a first line of defense; the major part of the plant’s defense 

against herbivores is, however, made up by different chemical defenses.

1.1.2 Chemical defenses

Arabidopsis thaliana processes a huge arsenal of inducible chemical herbivore defense 

mechanisms which contribute to direct and indirect defense by influencing the insect’s feeding 

behavior and fitness. One well studied indirect defense of Arabidopsis plants is the emission of 

volatile organic compounds (VOCs) after herbivore attack (Van Poecke, 2007). Interestingly the 

composition of VOCs emitted from limabean leaves after Spodoptera littoralis feeding and 

Cepaea hortensis, a snail feeding by rasping the plant tissue, was very similar to the VOCs 

emitted under spider mite infestation. Main components of VOCs are the fatty acid derivative 

(Z)-3-hexenyl acetate (Hex-Ac), the phenolic compound methyl-salicylate (MeSA) and the 

monoterpene linalool (Dicke et al., 1990; Mithöfer et al., 2005). The blend of volatiles differs in 

Pieris rapae infested and undamaged plants and functions as attractant for parasitic wasps like 
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Cotesia rubecula, which are specifically predating on P. rapae caterpillars (Van Poecke et al.,

2001).

Most defensive compounds produced by plants in response to herbivory belong to the class of 

secondary metabolites. The primary task of these metabolites is - in contrast to primary 

metabolites used for growth and biomass production - to defend the plant against herbivorous 

insects and pathogens (Bennett and Wallsgrove, 1994). Secondary metabolites are both, 

constitutively stored in different plant tissues and highly induced by herbivore attack (War et al.,

2012).

 

Figure 1. General structures of secondary metabolites in Arabidopsis thaliana.

Shown are the structures of glucosinolates (A) and flavonoids (B) occurring in A. thaliana. A) Shown are the basic core structure 
of glucosinolates (encircled) and the major groups of glucosinolates detected in A. thaliana (adapted from (Halkier and 
Gershenzon, 2006; Van Poecke, 2007)). B) Shown are the groups of flavonoids detected in A. thaliana (adapted from (Falcone 
Ferreyra et al., 2012; Saito et al., 2013)).

Plants of the family Brassicacae (like Arabidopsis) mainly store glucosinolates which are 

nitrogen- and sulfur-containing compounds ((Halkier and Gershenzon, 2006), Figure 1A). These

can be classified upon their biosyntheses into aliphatic (mainly produced from methionine) and 
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aromatic (produced from tryptophan, phenylalanine and tyrosine) glucosinolates (Glawischnig et 

al., 2003; Halkier and Gershenzon, 2006; Bidart-Bouzat and Kliebenstein, 2008). The 

glucosinolates are not toxic per se, but upon hydrolysis by a myrosinase, toxic products like 

nitriles, thiocyanates and isothiocyanates are formed. In undamaged Arabidopsis leaves, 

glucosinolates and myrosinase are stored spatially separated. When an herbivorous insect is 

chewing on a leaf, both components are mixed together; the toxic degrading products are formed 

and can act as feeding deterrent (Burow et al., 2006; Wittstock and Burow, 2010; Schramm et 

al., 2012). Glucosinolates are not uniformly distributed in all leaves of an Arabidopsis plant 

(Shroff et al., 2008; Shroff et al., 2015) and are induced upon herbivore feeding (Textor and 

Gershenzon, 2009). Insects that feed on Arabidopsis plants developed different detoxification 

mechanisms to deactivate the glucosinolate breakdown products. Spodoptera littoralis larvae 

detoxify isothiocyanates by forming conjugates with amino acids or glutathione which are 

further hydrolyzed (Schramm et al., 2012).

Next to glucosinolates, Arabidopsis plants also produce and store a variety of flavonoids, which 

are another group of secondary metabolites composed of flavonols, anthocyanins,

proanthocyanidins and others (Figure 1B, (Falcone Ferreyra et al., 2012; Saito et al., 2013).

Flavanoids are involved in plant defense against UV-B radiation by inhibiting the formation of

free radicals as well as the reduction of ROS formed. Besides this, flavonoids are also involved 

in plant defense against pathogens and herbivores (Verdan et al., 2011). There are indications 

that induction of the flavonoid biosynthesis pathway by UV light can be inhibited by pathogen-

induced defense responses (Logemann and Hahlbrock, 2002).

1.1.3 Anti-herbivore proteins

Many defense compounds like anti-insect proteins produced by the plant act directly on the 

metabolism or development of feeding insects. So are by the plant produced protease inhibitors 

(PIs) able to disturb the digestion of ingested food material (Green and Ryan, 1972) and, as a 

consequence of this, to slow down the development of the insect (Ryan, 1990). Well studied 

defensive proteins produced by Arabidopsis are the translated products encoded of JA-

responsive genes VSP2, THI2.1 and PDF1.2. In previous studies it was demonstrated that VSP2

(vegetative storage protein 2) is induced by wounding, methyl jasmonate, insect feeding, and 

phosphate deprivation. The VSP2 protein shows phosphatase activity in acid pH range
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corresponding to the pH of insect gut lumen. Here, VSP2 could significantly delay development 

of the insects and increase their mortality (Berger et al., 1995; Liu et al., 2005). The expression 

of VSP2 could also be inhibited by neomycin application in Arabidopsis (Vadassery et al., 2014).

Another JA-responsive gene induced by wounding of plant tissue and methyl jasmonate is 

THI2.1, encoding the antimicrobial protein thionin which might also contribute to herbivore 

defense (Epple et al., 1997; Bohlmann et al., 1998; Vignutelli et al., 1998). PDF1.2, encoding 

another defensin in Arabidopsis is also activated upon methyl jasmonate and Spodoptera feeding 

(Manners et al., 1998; De Coninck et al., 2010; Kanchiswamy et al., 2010). 

1.1.4 GABA as possible player in plant-herbivore defense

-amino butyric acid is well studied as a neurotransmitter in invertebrates. After coupling, 

GABA-mediated Cl--channels are opened and the signal is transduced (Bown et al., 2006). In 

plants, the non-protein amino acid GABA (Figure 2 A) plays a role in regulation of C/N balance 

and plant growth and development (Palanivelu et al., 2003; Bouche and Fromm, 2004; Mirabella

et al., 2008). Beside this, it was hypothesized that GABA has a possible role in plant defense.

Excess supply of GABA could lead to hyper activation of the Cl--channels leading to paralysis of 

the attacking insect (Bown et al., 2006). So it was shown that high content of GABA in the 

insect’s diet causes developmental restrictions by increasing time to pupation (Bown et al.,

2006).

GABA is mainly produced by decarboxylation of L-glutamate catalyzed by glutamate 

decarboxylases (GADs) in the cytosol (Figure 2 B, (Turano and Fang, 1998; Zik et al., 1998)). 

The catabolism of GABA into alanine and succinic semialdehyde is localized in the 

mitochondrial matrix, where a GABA transaminase (GABA-T) removes the amino group of 

GABA and transfers it onto pyruvate. The succinic semialdehyde than is exported from 

mitochondria or oxidized to succinate by succinic semialdehyde dehydrogenase (SSADH)

(Breitkreuz et al., 2003; Ludewig et al., 2008; Michaeli et al., 2011).
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Figure 2. Structure, syntheses and metabolism of -amino butyric acid (GABA).

Shown is the molecular structure of the non-protein amino acid GABA (A) and the metabolism and catabolism of GABA (B). 
GAD glutamate decarboxylase, GABA-T GABA transaminase, SSA succinic semialdehyde, SSADH succinic semialdehyde
dehydrogenase.

Under normal conditions, the activity of GADs and with this the accumulation of GABA, is 

regulated by Ca2+ and calmodulin. Upon stimuli-induced cytosolic calcium elevation, 

calmodulins (CaMs) bind to calcium, and interact with GADs by coupling to their CaM-binding 

site (Snedden et al., 1995). Under stress conditions like disruption of plant tissue, GADs are 

strongly induced by an acidification of the cytosol (Wallace et al., 1984; Carroll et al., 1994; 

Ramputh and Bown, 1996). This observation combined with the fact that Choristoneura 

rosaceana larvae reared on GABA-containing diet show reduced weight gain, are hints for an 

involvement in herbivore defense (Ramputh and Bown, 1996; Shelp et al., 1999; Bown et al.,

2006). Additionally, it was observed that feeding and even walking behavior of Heliothis 

virescens larvae on Nicotiana tabacum leaves increases the content of GABA in the leaf tissue 

(Bown et al., 2002). Till now, the temporal and spatial accumulation of GABA after herbivore 

attack is still unknown.

1.2 Plant-herbivore interaction

The recognition of a feeding herbivore starts seconds and minutes after the stimulus is perceived 

(Figure 3). Each herbivore bears a number of herbivore-associated molecular patterns (HAMPs, 

see section 1.2.1), which are – as first step in the signaling cascade - recognized by the plant 

through an array of specialized putative receptors (Mithöfer and Boland, 2008). After the 

receptor binding, a depolarization of the membrane occurs (see section 1.2.2) which is associated 

with an influx of calcium ions from external and internal stores into the cytosol ((Maffei et al.,

2007; Vadassery et al., 2012a) see section 1.2.3).
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Figure 3. Early events in plant-
herbivore interaction (Maffei et al.,
2007).

Shown are the first steps of plant
herbivore perception, which occurs in 
the first minutes and hours after attack. 
After the stimulus perception, the 
membrane depolarizes and initiates a 
spike in the cytosolic Ca2+ level. This 
activates a signaling cascade which 
leads among others to ROS production 
and the accumulation of 
phytohormones. These induce the 
expression of responsive genes and 
transcripts which in turn can modulate 
the plants metabolism. 

The spikes in cytosolic calcium levels [Ca2+]cyt are decoded by different calcium sensor proteins

(see section 1.2.4), which interact with their target proteins to initiate the downstream signaling 

((DeFalco et al., 2010), see section 1.2.5, 1.2.6). An accumulation of herbivory- and wounding-

related phytohormones like jasmonates, or the production of reactive oxygen species (ROS) are 

part of this cascade. As a consequence, metabolic changes like production of anti-herbivore 

peptides (Ryan, 1990; Zavala et al., 2004) or defensive substances like nicotine (Steppuhn et al.,

2004) and glucosinolates (Müller et al., 2010) are induced. 

1.2.1 Herbivore-associated molecular patterns (HAMPs) and receptors

The plant recognizes attacks by perception of different molecular patterns (MPs), which are 

associated with the outer surface or released components of the aggressor (Taylor et al., 2004;

Ausubel, 2005; Mithöfer and Boland, 2008). It is known that the conserved microbe-specific 

molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or 

PAMPs), are recognized by pattern recognition receptors (PRRs). MAMPs like flagellin (Flg22), 

elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator 

of Xa 21- -glucans from oomycetes are 

recognized by plant surface localized PRRs (Jones and Dangl, 2006; Newman et al., 2013; Ranf

et al., 2015). Herbivore associated molecular patterns (HAMP) are postulated to be present in 

insect oral secretions and are of two kinds: (i) chemical elicitors derived from insect oral 

secretions and oviposition fluids; and (ii) plant-derived self-recognition factors, DAMPs 

(damage-associated molecular patterns) occurring due to a specific pattern of wounding 

(Mithöfer and Boland, 2008; Heil, 2009; Heil and Land, 2014). Insect OS contain elicitors,
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notable examples are inceptins, which are peptides formed as proteolytic products of plant 

chloroplastic ATP synthase formed in caterpillar midgut, and fatty acid-amino acid conjugates 

(FACs) such as volicitin in maize (Alborn et al., 1997).

Upon herbivore attack, the plants encounter two main components of herbivore feeding: the 

wounding of plant tissue and recognition of elicitors in OS. HAMPs include the oral secretion of 

the larvae composed of saliva and reguritant, damaged plant parts, ingested and metabolized 

phytohormones and other components like volicitin, (Alborn et al., 1997; Maffei et al., 2004; 

Wu and Baldwin, 2010). Recently, a Porin-like protein was identified as elicitor in Spodoptera 

littoralis OS that originated from the insects gut microbiota (Guo et al., 2013). The released 

quantity of these HAMPs and the leaf area injured may be different for distinct insect feeding 

styles, which causes a different plant response (Ali and Agrawal, 2012). While insects with 

piercing sucking mouthparts like aphids cause only small wounds on plant tissue, chewing 

insects induce a much stronger lesion. The binding of all these HAMPs to unidentified PRRs is 

the first step of a complex signaling cascade, enabling the plant to react fast and efficient to 

different environmental stimuli.

1.2.2 Membrane depolarization

Next to the disrupted cells at the brink of the leaf area fed on, neighboring plant cells also 

respond to environmental stresses by changes in plasma transmembrane potential (Vm, (Ebel and 

Mithöfer, 1998; Maffei et al., 2004)). For Lima bean (Phaseolus lunatus) it was shown, that Vm 

changes induced by herbivores were much greater compared to these of single wounding and

could travel throughout the whole leaf (Maffei et al., 2006; Maffei et al., 2007). Vm changes are 

followed due to an electrical signal (called action potential) and also by system potentials, which 

can propagate the signal over longer distances ((Maffei et al., 2007; Zimmermann et al., 2009)).

Stress induced Vm changes (depolarization) can also modulate ion fluxes at the plasma 

membrane by activation of voltage-dependent channels, like Ca2+ channels (White, 2000; Maffei

et al., 2007). Mousavi et al. (2013) showed in Arabidopsis that for the propagation of electrical 

signals probably glutamate receptor-like genes are necessary. Finally, the electrical signals are 

able to induce JA-Ile elevation in systemic leaves (Mousavi et al., 2013).
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1.2.3 The second messenger calcium ions (Ca2+)

The calcium ion (Ca2+) plays an important role as a second messenger in varied signaling 

networks of plant cells (Dodd et al., 2010). Plant cells maintain a level of 100-200 nM free 

cytosolic calcium [Ca2+] cyt, the so called Ca2+ homeostasis. This incident is due to the fact that 

high concentrations of cytosolic Ca2+ have a cytotoxic effect on phosphate-containing 

components, including proteins and nucleic acids. To maintain this low level of Ca2+ in the 

cytosol, several active transporters like Ca2+-ATPases (ACAs) located in organelle- and cell 

membranes pump the Ca2+ into the stores (Sze et al., 2000). The Ca2+ is stored in high 

concentrations (105 times higher than cytosolic concentration) in different intra- and extracellular 

stores. While the apoplast serves as external calcium store, different organelles like the vacuole 

or chloroplasts store Ca2+ inside the cell (Knight et al., 1996; Peiter, 2011; Stael et al., 2011).

This high gradient of Ca2+ concentrations is the basis for a fast response to stress stimuli. Here an 

influx of Ca2+ from the stores into the cytosol induces a calcium signature, whose specific shape,

amplitude and duration encode the information perceived (Lecourieux et al., 2006; McAinsh and 

Pittman, 2009; Dodd et al., 2010).

It has been reported that feeding by Spodoptera littoralis on Phaseolus lunatus causes a transient 

increase in cytosolic [Ca2+]cyt in cells adjacent to the insect bite (Maffei et al., 2004). It was 

shown that application of Spodoptera littoralis OS could induce cytosolic Ca2+ elevations in 

Arabidopsis thaliana leaf discs and soybean suspension cultures (Maischak et al., 2007; 

Vadassery et al., 2012a). In Arabidopsis thaliana it was demonstrated that antibiotic neomycin 

selectively blocked the accumulation of OS-induced Ca2+ elevation and accumulation of the 

bioactive JA-Ile, in contrast to JA. Furthermore, neomycin treatment affected the downstream 

expression of JA-Ile-responsive genes, VSP2 and LOX2, (Vadassery et al., 2014). Ca2+
cyt

elevations in local leaf tissue upon herbivory have also been quantified using Yellow Cameleon 

reporter (YC 3.6), which allowed a clear distinction between meachnical damage and herbivory 

and discriminated between two larvae instars (Verrillo et al., 2014). A non-invasive whole plant 

calcium imaging demonstrated that wounding alone as well as Spodoptera littoralis feeding 

could induce local and also systemic cytosolic calcium elevations in Arabidopsis thaliana (Kiep

et al., 2015). It has been demonstrated that phytohormones like JA/JA-Ile and OPDA application 

also induces a specific Ca2+ elevation in cytosol and nucleus (Walter et al., 2007; Mazars et al.,
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2009). To achieve a specific decoding of Ca2+ signals both in the nucleus and the cytosol, the 

plant processes an arsenal of different calcium sensor proteins (DeFalco et al., 2010).

1.2.4 Calcium sensors

In Arabidopsis the most studied groups of calcium sensor proteins are calmodulins (CaMs), 

calmodulin-like proteins (CMLs), calcineurin B-like proteins (CBLs) and calcium-dependent 

protein kinases (CDPKs, now renamed as CPKs), shown in Figure 4 (DeFalco et al., 2010).

Figure 4. Different classes of 
calcium sensor proteins activated 
upon abiotic and biotic stimuli 
(DeFalco et al., 2010).

Shown are the classes of Ca2+

sensor used to decode cytosolic 
Ca2+ spikes induced by diverse 
stimuli. Here, calcium sensor 
proteins function as signal relays 
(CaM/CMLs and CBLs) or primary
responders (CDPKs).

In general, calcium sensor proteins found in Arabidopsis can be classified - in sense of mode of 

action - into two groups: sensor responders and sensor relays (DeFalco et al., 2010). Sensor 

responders bind the cytosolic free Ca2+, undergo conformational changes and actively regulate 

downstream signaling by their own enzymatic activity. The family of CPKs, Ca2+ sensors 

involved in e.g. ABA and herbivore defense signaling, belongs to this group (Wu and Baldwin, 

2010; Romeis and Herde, 2014). So it was shown, that Arabidopsis cpk3 and cpk13 mutants 

express significantly less JA-responsive genes making them more susceptible to Spodoptera 

feeding (Kanchiswamy et al., 2010). Silencing of CPK4 and CPK5 in Nicotiana attenuata plants 

in contrast caused higher accumulation of JA and reduced growth of Manduca sexta larvae 

(Hettenhausen et al., 2013b; Yang et al., 2014).

Sensor relay proteins in contrast do not contain any enzymatic domain. After binding of calcium 

and conformational shift, they need to physically interact with target proteins to transfer the 

signal perceived. CaMs/CMLs and CBLs can be assigned to this group (DeFalco et al., 2010).
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CBLs form complexes with CIPKs (CBL-interacting protein kinases) and regulate membrane 

channels and transporters (Batistic and Kudla, 2004). The function of CBLs is still not well 

understood since the knowledge about CBL-interacting proteins is limited. First results show that 

CBLs are involved in salt stress signaling . Here, CBL1 and CBL9 are 

involved in K+ uptake by activation of a K+ -transporter under low-K+ conditions (Xu et al.,

2006) and CBL4 (also SOS3) activates an H+/Na+ exchanger (also SOS1) under high salt stress 

(Halfter et al., 2000).

The induction pattern of CAMs and CMLs is better understood (McCormack and Braam, 2003; 

McCormack et al., 2005). Arabidopsis thaliana CAMs, which are very similar to animal CAMs, 

do not show strong transcript abundance changes in the response to diverse stimuli. Only for 

CAM2 (also TCH1) it was observed that the expression was induced by touch (Braam and Davis, 

1990; Lee et al., 2005). The group of CMLs is involved in the regulation of diverse signaling 

pathways (McCormack et al., 2005).

1.2.4.1 Calmodulin-like proteins (CMLs)

CMLs are one class of calcium sensor proteins, which act as sensor relays where they are 

propagating the Ca2+ signal. To achieve this, CMLs contain a number of EF-hands (1-6), helix-

loop-helix structures, which are responsible for high-affinity cooperative binding of Ca2+. After 

binding, CMLs undergo a conformational change and can interact with their target proteins 

(Kawasaki et al., 1998; McCormack and Braam, 2003; Clapham, 2007; Gifford et al., 2007). In 

Arabidopsis, the class of CMLs consists of 50 members (Figure 5), which show at least 16 % 

sequence identity to CAMs. Analysis of a neighbor-joining tree, based on amino acid 

similarities, showed that CMLs cluster in 9 groups (McCormack et al., 2005).
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Figure 5. Phylogenetic tree of 
CAMs and CMLs of Arabidopsis 
thaliana (McCormack et al.,
2005).

Shown is a neighbor joining tree, 
based on amino acid similarities.
The seven CAMs and 50 CMLs 
cluster in 9 different groups. For 
more details see ((McCormack et 
al., 2005), adapted). CMLs induced 
by insect oral secretions are 
indicated by arrows (Manuscript 1,2 
and (Vadassery et al., 2012a)).  

While the seven CAM genes in Arabidopsis are very uniformly expressed at a high transcript 

level, the CMLs show various expression patterns over different tissues and developmental 

stages of the plant while the transcript levels are quite low. These observed expression patterns 

do not correlate with the identified CML groups (McCormack et al., 2005). While CMLs like 

CML8, 9, 24, 42 are expressed in all major plant organs (Delk et al., 2005; Magnan et al., 2008; 

Park et al., 2010; Vadassery et al., 2012a), other CMLs show a very specific expression in a 

single plant organ. So it was shown that in Arabidopsis thaliana, CML43 is only expressed in 

roots (Bender et al., 2014). Other CMLs show a specific subcellular localisation, for example 

CML30 is targeted to mitochondria and CML3 to peroxisomes (Chigri et al., 2012). CML39 is 

mostly expressed during early seedling establishment (Bender et al., 2013) and CML12 (also 

TCH3) is expressed in growing tissues (Sistrunk et al., 1994). These observations indicate that 

CMLs might be involved in a tissue- and growth stage-specific decoding of Ca2+ signals. 
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It was demonstrated that the expression of CMLs is induced by diverse abiotic as well as biotic 

stimuli. So is CML8 induced by SA and salt stress (Park et al., 2010). CML9 is also induced by 

SA as well as by infection with Ps. syringae and can alter plant responses to ABA and abiotic 

stress (Magnan et al., 2008; Leba et al., 2012). CML24 modulates ABA level during ion stress,

regulates pollen tube growth and can induce changes in flowering time (Delk et al., 2005; 

Hubbard et al., 2008; Yang et al., 2014). Additionally it was shown that expression of CML37,

CML38 and CML39 are regulated by salt- and drought stress, phytohormones and P. syringae

infection (Vanderbeld and Snedden, 2007) and CML42 is involved in trichome branching 

(Dobney et al., 2009). Recently, it was shown that one member of the CML-family, CML42, is 

involved in Arabidopsis thaliana defense against Spodoptera littoralis herbivory. CML42 acts as 

a negative regulator of plant defense against herbivory and affects JA perception of the plant. 

CML42 gene expression is herbivore elicitor-specific and is not activated upon mechanical 

wounding (Vadassery et al., 2012a). It was additionally observed that the gene expression of 

several CMLs is induced by insect OS (in Manuscript 1, Figure 5, arrows). The exact position of 

CMLs in the signaling cascade and the further processing of the signal by target proteins are still 

unknown.

1.2.5 Downstream signaling

The downstream signaling components of plant herbivore defense are not completely known, but 

it became obvious that several signaling pathways are activated. So are activation of mitogen-

activated protein kinases (MAPKs), accumulation of jasmonic acid (JA) and expression of JA-

dependent genes, and the production of reactive oxygen species (ROS) involved (Wu and 

Baldwin, 2010).

The production of reactive oxygen species (ROS), which include Superoxide anion (O2 ), 

hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (·OH), is well studied as a 

part of plant response to pathogens (Lamb and Dixon, 1997). In recent studies it became clear 

that ROS production is also involved in herbivore defense. Medicago truncatula plants 

accumulated ROS only after herbivory while wounding did not induce ROS production (Leitner

et al., 2005). In lima bean plants (Phaseolus lunatus) it was similarly shown that the production 

of ROS after herbivory was much higher than that after mechanical wounding alone (Maffei et 
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al., 2006). So showed soybean plants challenged with Helicoverpa zea an elevated lipid 

peroxidation and ·OH radical formation (Bi and Felton, 1995).

Another early signaling event after herbivore attack is also the activation of MAPKs, which play 

critical roles in plant resistance to herbivores by reshaping the jasmonate pathway and the 

transcriptome (Hettenhausen et al., 2015). These activated MAPKs phosphorylate their 

substrates, which include transcription factors and enzymes (Hazzalin and Mahadevan, 2002). It 

was shown that FACs, elicitors in insect OS, induce the MAPKs in the wounded leaf of treated 

Nicotiana attenuata plants (Wu et al., 2007). Interestingly, activation of MAPK4 in Nicotiana 

attenuata shows herbivore specific pattern. While OS of M. sexta induced MAPK4 and 

decreased JA accumulation, Spodoptera littoralis OS did not induce a change in JA level 

(Hettenhausen et al., 2013a). In Arabidopsis thaliana, grasshopper (Schistocerca gregaria) OS 

was also able to activate MAPKs, MPK3 and MPK6 (Schäfer et al., 2011). 

A very powerful tool mediating plant defense are phytohormones, endogenous signaling 

compounds. Several groups of phytohormones (Figure 6) play important roles in plant growth 

and development. Next to the regulation and coordination of developmental processes, plant 

hormones are essential for the adaption to the abiotic and biotic environment (Bari and Jones, 

2009).

Figure 6. Structure of different phytohormone classes.

Shown are the basic structures of phytohormone classes and the structural JA-Ile mimic coronalon in comparison to JA-Ile 
itself (inlet).
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In plant defense against herbivory, the most important and most studied class of phytohormones 

is the one of jasmonates (Wasternack, 2007). Jasmonates are lipid-derived molecules originating 

from plastid membrane- -linolenic acid. The jasmonic acid (JA) biosynthetic pathway is 

well understood and the enzymes participating in it are well characterized (Vick and 

Zimmerman, 1984; Schaller and Stintzi, 2009). In the chloroplast, the released -linolenic acid is 

metabolized in several steps to form OPC-8:0 followed by cis-OPDA, which is catalyzed by 

lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC). After a 

translocation to the peroxisome, the cis-OPDA is further processed to form JA (Schaller and 

Stintzi, 2009). The active phytohormone JA-Ile is formed by a conjugation of JA and the amino 

acid isoleucine catalyzed by JASMONATE RESISTANT 1, JAR1 (Staswick and Tiryaki, 2004).

Activation of the receptor complex SCF-COI1 by JA-Ile (Figure 7) triggers the degradation of 

JAZ proteins, the transcriptional repressors of JA responsive genes. This removal of repression 

leads to activation of the transcription factor MYC2 and the expression of anti-insect JA-

responsive genes including PDF1.2, Thi2.1 and VSP2 (Wasternack and Kombrink, 2010).

Mutants of receptor COI1 like coi1-1 and coi1-16, jar1 and jaz1 show higher susceptibility to 

herbivore feeding (Feys et al., 1994; Chung et al., 2008; Westphal et al., 2008; Chung et al.,

2009; Abe et al., 2013).

Figure 7. Induction and downstream JA signaling 
pathway in Arabidopsis thaliana.

Accumulation of JA is induced by herbivory and other 
biotic stimuli as well as by abiotic stimuli. The active 
jasmonate JA-Ile is produced and interacts with the SCF-
COI1 receptor complex. This interaction induces the 
degradation of JAZ repressor proteins and enables the 
MYC2-dependent gene expression (from: (Howe and 
Jander, 2008)).
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The production of jasmonates and the subsequent signaling in response to herbivore attack is 

triggered by wounding and associated osmotic stress as well as by elicitors originating from the 

insect (Turner et al., 2002; Maffei et al., 2004; Mithöfer et al., 2005). Production and 

accumulation of jasmonates is a very strong and effective defense reaction against feeding 

insects, since the response to triggers starts very fast. So it was shown for Arabidopsis leaves that 

jasmonate accumulation starts already 2-5 minutes after wounding of the plant tissue (Glauser et 

al., 2008). Additionally it was shown in lima bean leaves that the area fed by Spodoptera 

littoralis larvae, contained a high level of jasmonates, while the surrounding plant tissue showed 

lower content of jasmonates (Schulze et al., 2007). To further analyze the dynamic and 

downstream signaling of jasmonates, structural mimics like coronalon (Figure 2 inlet) were

applied in previous studies. It was demonstrated that coronalon could successfully induce plant 

defense reactions like secondary metabolites and the expression of defense-genes (Schüler et al.,

2001; Schüler et al., 2004; Pluskota et al., 2007; Nakamura et al., 2014)).

In recent studies, it was shown that also cytokinins (CK), which are involved in resistance to 

abiotic stress like drought or nutrient availability and senescence signaling, have a possible role 

in plant herbivore defense. In Nicotiana attenuata, CK levels and several genes in the signaling 

cascade were induced by Manduca sexta OS and wounding (Schäfer et al., 2015).

A major player in adaption to abiotic stress stimuli is the sesquiterpenoid abscisic acid (ABA), 

which is mediating resistance to salt, drought and cold stress by regulation of stomata closure 

(Zhu, 2002). ABA is also involved in embryo maturation, seed dormancy, germination, cell 

division and elongation (Finkelstein, 2013). Interestingly it was shown, that ABA is also 

involved in plant defense signaling. Here the complex interplay between ABA and jasmonic acid 

(JA)-ethylene signaling pathways can regulate plant defense (Anderson et al., 2004).
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1.3 Aim of the work

During their life, plants need to adapt to many different stress factors from the biotic and abiotic 

environment. The signal transduction pathway connecting the recognition of these environmental 

cues and the downstream signaling are still poorly understood. One group of proteins induced by 

various environmental stimuli includes the calmodulin-like proteins, CMLs, which act as Ca2+

sensors. CMLs are involved in decoding the important cytosolic Ca2+ elevations that originate

from diverse stimuli.

The aim of this work was to study the role of Ca2+ and different CMLs in Arabidopsis response 

to herbivory and herbivory-related treatments (Figure 8) as well as in the response to abiotic 

stress. Therefore, the following aspects were studied in detail:

analysis of gene expression patterns of different herbivory-induced CMLs in response to 

Spodoptera littoralis oral secretion (OS)

characterization of a CML knock-out mutant, cml37, to study the role and mode of action 

of AtCML37 in response to Spodoptera littoralis herbivory

examination of the role of AtCML37 and AtCML42 in ABA accumulation in response to 

drought stress 

analysis of the role, induction and the distribution pattern of the non-protein amino acid 

GABA in Arabidopsis defense to Spodoptera littoralis herbivory and wounding as well 

as the connection to jasmonate signaling. 

 

Figure 8. Herbivory-related treatments used to study Arabidopsis thaliana response to Spodoptera littoralis feeding.

Shown are the treatments used to disentangle the response of Arabidopsis plants to Spodoptera larvae. The different 
approaches used are: mechanical wounding of hole plants, achieved by MecWorm treatment (A); application of 
collected oral secretion of Spodoptera larvae fed on WT plants (B); and direct feeding of Spodoptera larvae on 
potted plants (C). All treatments were done for WT and mutant plants in parallel.   
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2 Manuscript overview

2.1 Manuscript 1

Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived

(Spodoptera littoralis) oral secretion

Authors: Jyothilakshmi Vadassery, Sandra S. Scholz, and Axel Mithöfer, (2012).

Status: published, Plant Signaling & Behavior, 7(10), 1277-1280. doi:10.4161/psb.21664.

Summary:

The aim of this study was to investigate the expression profiles of different calmodulin-like 

proteins (CMLs) in the scope of herbivory. To mimic herbivory, oral secretion of the generalist 

herbivore Spodoptera littoralis was used and applied to wound Arabidopsis plants. It was 

observed that several CMLs are induced by elicitors in these oral secretions, although the 

induction patterns were quite different. One group of CMLs showed a very early and transient 

expression profile (CMLs 11, 12, 16) while the expression of the second group of CMLs (CMLs 

9, 17, 23) stared later and showed a sustained peak. This result suggests that a differential 

expression profile of multiple CMLs serves as a basis for a complex signaling network which 

enables a specific decoding of calcium signals originating from different stimuli.

JV AM: planed the research, JV SSS: conducted and analyzed the research,

JV SSS AM: wrote the paper.
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2.2 Manuscript 2

Mutation of the Arabidopsis Calmodulin-like protein CML37 deregulates the jasmonate 

pathway and enhances susceptibility to herbivory

Authors: Sandra S. Scholz, Jyothilakshmi Vadassery, Monika Heyer, Michael Reichelt, Kyle W. 

Bender, Wayne A. Snedden, Wilhelm Boland, and Axel Mithöfer, (2014). 

Status: published, Molecular Plant, 7 (12), 1712–1726. doi:10.1093/mp/ssu102.

Summary:

The aim of this study was to investigate the role of calcium sensor CML37 in Arabidopsis 

response to Spodoptera littoralis herbivory. The analysis of CML37 gene induction pattern in 

wildtype plants revealed that CML37 is induced by mechanical wounding as well as by elicitors 

in S. littoralis oral secretion. To study the role of CML37 in Arabidopsis, cml37 mutants were 

analyzed in the scope of S. littoralis herbivory. In feeding assays, it was observed that CML37 

acts as a positive defense regulator since S. littoralis larvae gained significantly more weight on 

cml37 plants. This result was also reflected in the lower accumulation of jasmonate 

phytohormones and the resulting reduced expression of JA-responsive genes in cml37. This 

observation can be explained by a lower expression of JAR1 gene as well as a reduced JAR1

enzyme activity in cml37 mutant plants. The results indicate that CML37 is involved in biotic 

stress response in Arabidopsis. CML37 is the first CML connecting Ca2+ and jasmonate 

signaling. 

SSS JV MH AM: planed the research, SSS JV MH: conducted and analyzed the research,

MR: analyzed content of phytohormones and plant secondary metabolites

KWB WS: planed and conducted experiments for analysis of biochemical properties of CML37

SSS JV MH MR AM KWB WS WB: wrote the paper.
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2.3 Manuscript 3

Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in 

Arabidopsis

Authors: Sandra S. Scholz, Michael Reichelt, Jyothilakshmi Vadassery, and Axel Mithöfer, 

(2015). 

Status: accepted, Plant Signaling & Behavior, Volume 10(5), will be published 20th of July.

Summary:

The aim of this study was to investigate the role of calcium sensors CML37 and CML42 in 

response to abiotic drought stress in Arabidopsis. Interestingly, both CMLs are involved in 

drought stress response but show antagonistic effects. While cml37 plants are more susceptible to 

drought stress treatment and die faster compared to wildtype, cml42 plants don’t show a visible 

phenotype different from wildtype. Analysis of the drought-related phytohormone ABA revealed 

that cml37 plants accumulate significantly less ABA compared to wildtype. In contrast to this, 

cml42 plants show in early time points a similar level of ABA like observed in wildtype and in 

later time points a higher and prolonged ABA accumulation. This result suggests that CML37 is 

next to biotic stress responses also involved in abiotic stress signaling. 

SSS JV AM: planed the research, SSS: conducted and analyzed the research

MR: analyzed phytohormones SSS MR JV AM: wrote the paper.
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2.4 Manuscript 4

Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, and 

jasmonate-independent defense response

Authors: Sandra S. Scholz, Michael Reichelt, Dereje Mekonnen, Frank Ludewig, and Axel 

Mithöfer, (2015).

Status: submitted 25.06.2015, Plant Cell & Environment.

Summary:

The aim of this study was to investigate the role of the non- -

aminobutyric acid) in Arabidopsis response to Spodoptera littoralis herbivory. To investigate the 

possible role of GABA in herbivore defense, which was suggested by previous studies, different 

GABA mutant lines were analyzed. A gad12 x pop2-5 mutant line, which accumulates GABA 

over time, showed significantly lower susceptibility to Spodoptera herbivory. This result 

indicates that GABA accumulation confers resistance against herbivore feeding. Additionally, 

GABA shows a concentration-dependent growth inhibition of Spodoptera larvae in a diet-

feeding assay. The rapid accumulation of GABA in the plant leaf is induced by tissue damage 

like MecWorm treatment or Spodoptera feeding, and acidifying of the cytosol. By analyzing the 

phytohormone and GABA levels in different GABA- (gad12; gad12xpop2-5) and JA-mutant 

lines (jar1), it became clear that the GABA defense pathway is not dependent on jasmonates and 

that vice versa jasmonate biosynthesis is also not dependent on the GABA level. Summarizing, 

the results indicate that the herbivore-induced accumulation of GABA is a general, direct and 

systemic defense independent of JA.

SSS DM AM FL: planed the research, SSS DM: conducted and analyzed the research,

MR FL: analyzed content of phytohormones and GABA,

SSS MR DM AM FL: wrote the paper.
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2.5 Manuscript S1

Additional evidence against jasmonate-induced jasmonate induction hypothesis

Authors: Sandra S. Scholz, Michael Reichelt, Wilhelm Boland, and Axel Mithöfer, (2015).

Status: resubmitted 19.06.2015, Plant Science.

Summary:

The aim of this study was to reinvestigate the hypothesis of jasmonate-induced-jasmonate-

biosynthesis in Arabidopsis thaliana by use of coronalon, a structural mimic of JA-Ile. 

Coronalon was applied to wounded and unwounded plants to disentangle the influence of tissue 

damage on the induction of JA biosynthesis genes and accumulation of endogenous jasmonates. 

It became clear that application of coronalon did neither induce endogenous jasmonate syntheses 

nor the accumulation of hydroxylated jasmonates. The same pattern was observed for wounded 

plants, where the coronalon treated plants showed the same level of endogenous jasmonates as 

the control plants. On the other hand, both treatments were able to induce the expression of JA 

biosynthesis genes supporting the hypotheses of a post-translational regulation. Summarizing, 

the results show that JA alone induces JA-biosynthesis genes but no JA accumulation. 

SSS AM: planed the research, SSS: conducted and analyzed the research

MR: analyzed content of phytohormones, SSS MR WB AM: wrote the paper.
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2.6 Manuscript S2

Synthesis, biological activity, metabolism and systemic transport of 7-fluoro-OPC-8:0, a 

fluorinated mimic of the endogenous jasmonate precursor OPC-8:0

Authors: Guillermo H. Jimenez-Aleman*, Sandra S. Scholz*, Monika Heyer, Michael Reichelt, 

Axel Mithöfer, Wilhelm Boland, (2015).

Status: submitted 12.06.2015, BBA Molecular and Cell Biology of Lipids.

* These authors contributed equally to the work.

Summary:

The aim of this study was to synthesize a labeled OPC-8:0 analogue to study transport 

mechanisms and metabolism of JA precursors in Arabidopsis thaliana. Because F atoms behave 

very similar to H and are very likely accepted by metabolizing enzymes, a fluorinated OPC was 

synthesized: F-OPC-8:0. The F-OPC-8:0, applied to A. thaliana plants, was metabolized by ß-

oxidation to F-OPC-6:0 and F-OPC-4:0. These metabolites, and the active jasmonates produced 

from them, were able to induce the expression of JA biosynthesis and JA-responsive genes. By 

analysis of single leaves it was observed, that the applied F-OPC-8:0 was transported to systemic 

adjacent leaves. The metabolism of F-OPC-8:0 was only detected in the local treated leaf. 

Summarizing this, we synthesized a fluorinated OPC-8:0 analogue which was biologically active 

and could show that this JA precursor is transported to systemic non-wounded leaves. Till now, 

only JA-Ile was known as a transported compound.

GHJA SSS MH AM: planed the research, GHJA: carried out the syntheses of 7F-OPC-8:0,

SSS: conducted the Arabidopsis assays, MH: analyzed transport of 7F-OPC-8:0, GHJA MH 

SSS: analyzed the research, MR: analyzed content of phytohormones and metabolites, GHJA 

SSS MR MH AM WB: wrote the paper.
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SUPPLEMENTAL DATA

Table S1. Primers used for RT-PCR.

Target (Atg number) Sequence

RPS18B (At1g 34030) 5’- GTCTCCAATGCCCTTGACAT -3’

5’- TCTTTCCTCTGCGACCAGTT -3’

Actin2 (At3g18780) 5’- AGTGGTCGTACAACCGGTATTGTGCT -3’

5’- TCCCGCTCTGCTGTTGTGGTG-3’

CML37 (At5g 42380) 5´- GGTGGAGGAAGTGGTGAAGA - 3´ 

5´- GTAAACTCGCCGCCGTAATA - 3` 

OPR1 (At1g 76680) 5´- TGTGTCCTTGTTGTTGCAGGTTTTG - 3´

5´- TCCAACACGGTCTGGTCCGA - 3´

OPR3 (At2g 06050) 5´-CCTTCTTCCAGATCGGCGGAGACAT -3’

5´-GGCGCCAGAACCACTCGATGA -3’

GST1 (At1g 02930) 5’- GCCTTTCATCCTTCGCAACCCCT -3’

5’- TCGCCATGTCCTTGCCAGTTGA -3’

JAR1 (At2g 46370) 5’- TCCGTTTCGTCTGATCGGGATGT -3’

5’- AGCTTCTTCAGGGTCAGTAGCGT -3’

MYC 2 (At1g 32640) 5’- CGGAGATCGAGTTCGCCGCC -3’

5’- AATCCCGCACCGCAAGCGAA -3’

JAZ1 (AT1G19180) 5’- CGCGAGCAAAGGCACCGCTA -3’

5’- TCCAAGAACCGGTGAAGTGAAGC -3’

JAZ2 (AT1G74950) 5’- CCCGGCCTCTTTAGCCTGCG -3’

5’- ACCGTGAACTGAGCCAAGCTG -3’

JAZ3 (AT3G17860) 5’- AGAGATTCAGCTCCCAACAGAGGAA -3’

5’- TGGAAACCCGGCATCGACATGG -3’

JAZ5 (AT1G17380) 5’- GCTAAGGCACAAGCGCCGGA -3’

5’- GCATCGCATTTTGTTTCCCTGGTGG -3’
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JAZ6 (AT1G72450) 5’- TGTCAACGGGACAAGCGCCG -3’

5’- TCCGGTGCTACTTTTGCCGGT -3’

JAZ9 (AT1G70700) 5’- ATGCGCCGGGAACGGTTTGA -3’

5’- GCAGCAACGGGTGTGTCCCT -3’

JAZ10 (At5g 13220) 5’- TCGAGAAGCGCAAGGAGAGATTAGT -3’

5’- AGCAACGACGAAGAAGGCTTCAA -3’

JAZ12 (AT5G20900) 5’- ATGAGCCACGCGCTTCCGTT -3’

5’- ACCGTTGGCTCAGCGGTTTGA -3’

PDF1.2 (At5g44420) 5’- CTGCTTTCGACGCACCGGCA -3’

5’- GTTGCATGATCCATGTTTGGCTCCT -3’

Thi2.1 (At1g72260) 5’- CGCCATTCTCGAAAACTCAGCTGA -3’

5’- GTTTAGGCGGCCCAGGTGGG -3’

VSP2 (At5g24770) 5’- ACGACTCCAAAACCGTGTGCAA -3’

5’- CGGGTCGGTCTTCTCTGTTCCGT -3’
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Figure S1. Phytohormone elevation upon Spodoptera littoralis herbivory in cml37-1 line 

(SALK_011488C).

Mean (± SE, n=20) levels of JA (a), (+) JA-Ile (b), cis-OPDA (c) and SA (d) in Col-0 WT 

(white) and cml37-1 plants (black) after S. littoralis feeding for 24 and 48 h. The phytohormone 

levels were measured from local S. littoralis fed leaves. Untreated leaves were used as controls. 

Statistically significant differences between phytohormones in Col-0 and cml37 plants after 

feeding were analysed by t-test, *p=<0.05.
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Figure S2. S. littoralis OS- and jasmonate-induced changes in cytosolic calcium concentration 

(Ca2+cyt) in Arabidopsis WT and cml37-1plants carrying the cytosolic aequorin.

a) Mean (± SE, n=8) level of cytosolic calcium concentration in Col-0 WT (light grey) and 

cml37-1 plants (dark grey, black) after application of OS. 40 μL of S. littoralis OS (1:1 diluted) 

or water (control) were applied to equilibrated leaf discs of 4-5 week old aequorin expressing 

plants.

b) Mean (± SE, n=8) level of cytosolic calcium concentration in Col-0 WT (light grey) and 

cml37-1 plants (dark grey, black) after application of JA. 40 μL of a 500 μM JA solution or 

water (control) were applied to equilibrated leaf discs of 4-5 week old aequorin expressing 

plants.

c) Mean (± SE, n=8) level of cytosolic calcium concentration in Col-0 WT (light grey) and 

cml37-1 plants (dark grey, black) after application of JA-Ile. 40 μL of a 500 μM JA-Ile solution 

or water (control) were applied to equilibrated leaf discs of 4-5 week old aequorin expressing 

plants.
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Figure S3. Root growth assay in Arabidopsis wild type (WT) and cml37-1 plants treated with 

MeJA.

Mean root length of Col-0 WT (white), coi1-16, jar1 and cml37-1 seedlings (black) after 14 days 

of vertical growth on 25 μM MeJA. JA mutants coi1-16 and jar1 were used as positive controls. 

Statistically significant differences between plants were analysed by One Way ANOVA and 

Student-Newman-Keuls-Test (P = <0.05).
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Figure S4. Content of glucosinolates and flavonoids in Arabidopsis wild type (WT) and cml37-1

plants upon herbivory. 

a) Mean (± SE, n=10) levels of glucosinolates in Col-0 WT (white) and cml37-1 (black) plants 

after Spodoptera littoralis feeding for 1 and 7 days. Untreated leaves were used as control and 

the experiment was repeated independently. Statistically significant differences between WT and 

cml37 plants were analysed by One Way ANOVA and Student-Newman-Keuls-Test. Groups 

were tested for each time point separately (P = <0.05). 

b) Mean (± SE, n=6) levels of kaempferol- glycosides in unwounded Col-0 WT (white) and 

cml37-1 plants (black). No statistical difference detected. KRGR: kaempferol 3-O-[6”-O-

(rhamnosyl)glucoside] 7-O-rhamnoside, KGR: kaempferol 3-O-glucoside 7-O-rhamnoside, 

KRR: kaempferol 3,7-O-dirhamnosid. Statistically significant differences between flavonoids 

levels in WT and cml37-1 plants were analysed by Mann-Whitney Rank Sum Test for each 

flavonoid separately.
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Figure S5. Level of CML37 expression in independent cml37 lines.

Mean expression (± SE) of CML37 in Col-0 WT (white) and cml37 plants (black, grey) after 

Spodoptera littoralis feeding for 1 h. cml37 plants of independent t-DNA lines were used: 

cml37-1: SALK_011488C; cml37- 2: SALK_017485. Transcript levels were determined by real-

time PCR analysis and normalized to the plant RPS18B mRNA level. The expression of CML37

was calculated relative to WT control.
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Figure S6. Identification of cml37-knock-out lines by RT-PCR.

Expression of CML37 in Col-0 WT and cml37 plants was determined after Spodoptera littoralis

feeding for 1 h by use of RT-PCR. Equal amount of PCR product was loaded on a 0.8% agarose 

gel, Actin was used as control. L ladder, cml37-1 SALK_011488C, cml37-2 SALK_017485.



Manuscripts

53 
 

Manuscript 3
 

 

 

 

 

 

 

 

 

 

 



Manuscripts

54 
  

54



Manuscripts

55 
 

 5



Manuscripts

56 
 

56



Manuscripts

57 
 

 

  

 

 

 

 

 

 

 

Manuscript 4
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Manuscripts

58 
 

Running title: Insect-induced GABA accumulation
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Significance statement 

Here a systematic study with Arabidopsis thaliana wild-type and mutant plants that are 

either impaired in -aminobutyric acid (GABA) synthesis or constitutively accumulating 

GABA is presented. Results indicate that during insect herbivore attack the glutamate 

decarboxylase-dependent generation and accumulation of the non-proteinogenic amino 

acid GABA is a wound-induced, direct and systemic defensive reaction. The GABA-

based defense mechanism can be compared with other tissue-disruption mediated 

defenses such as glucosinolate accumulation.
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Abstract 

The four-carbon non-proteinogenic amino acid -aminobutyric acid (GABA) is present in 

all organisms analyzed so far. In invertebrates GABA acts as neurotransmitter; in plants 

different functions are still under discussion. Among others, its involvement in abiotic 

stress reactions and as defensive compound against feeding insects is suggested. 

GABA is synthesized from glutamate by glutamate decarboxylases (GAD) and 

degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad12 double 

mutants showing reduced GABA contents as well as GABA-enriched triple mutants 

(gad12 x pop2-5) were generated and employed for a systematic study of GABA 

induction, accumulation and related effects in Arabidopsis leaves upon herbivory. 

Results demonstrate that GABA accumulation is stimulated by mechanical, insect 

feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect 

(Spodoptera littoralis) herbivory. Higher GABA level in plant tissue in turn affects the 

performance of feeding larvae as well as higher levels of GABA in insect diet. GABA 

enrichment occurs not only in the challenged but also in adjacent leaf. This induced 

defense response is neither depending on jasmonates, phytohormones typically 

involved in defense reactions against herbivores, nor is jasmonate induction depending 

on the presence of GABA. Thus, in plants the rapid accumulation of GABA very likely 

represents a general, direct and systemic defense reaction against insect herbivores.

Keyword index: -aminobutyric acid, Arabidopsis thaliana, herbivory, Spodoptera 

littoralis, MecWorm, jasmonate, wounding, plant defense.
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INTRODUCTION

The four carbon non-proteinogenic amino acid -aminobutyric acid (GABA) is 

widespread in animals, plants and microorganisms. GABA is mainly synthesized by 

decarboxylation of L-glutamate in the cytosol. The reaction is carried out by glutamate 

decarboxylases (GAD, EC 4.1.1.15). In Arabidopsis, five genes encoding GADs exist. It 

is suggested that GAD activity is regulated by pH and Ca2+/calmodulin (Bown et al.

2006; Carroll et al. 1994; Snedden et al. 1995). At neutral pH, GAD activity depends on 

Ca2+/calmodulin; however, any acidification of the cytosol, for example by wounding-

mediated disruption of the vacuole, can stimulate GAD activity independent on 

Ca2+/calmodulin. In addition, GABA can also be produced from polyamines (Shelp et al.

2012). Catabolism of GABA is localized in the mitochondrial matrix. A GABP (GABA 

permease) transporter encoded by a single copy gene in Arabidopsis has been 

described to import GABA into mitochondria (Michaeli et al. 2011). However, the lack of 

a prominent phenotype of the loss-of-function gabp mutant argues for the presence of 

other transporters capable of importing GABA into mitochondria. Once in the 

mitochondrial matrix, a transaminase reaction catalyzed by a GABA transaminase 

(GABA-T) moves the amino group of GABA onto pyruvate yielding alanine and in 

parallel succinic semialdehyde (SSA). In Arabidopsis, GABA-T is also encoded by a 

single copy gene. Disruption of the GABA-T gene leads to strong GABA accumulation. 

In the vegetative growth phase, no prominent phenotype of gaba-t mutants can be 

observed, however, fertility is decreased in the mutant due to impaired pollen tube 

growth (Palanivelu et al. 2003; Renault et al. 2011; Yu et al. 2014). SSA is either 

exported from mitochondria by a yet unknown transporter and further metabolized 
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(Breitkreuz et al. 2003), or is oxidized to succinate, a tricarboxylic acid (TCA) cycle 

intermediate, by succinic semialdehyde dehydrogenase (SSADH). Disruption of the 

single copy SSADH gene leads to a severe phenotype. It has been shown that 

accumulation of SSA is causative for the production of leaf necrosis and impaired 

growth of ssadh mutants due to the production of reactive oxygen species (Bouche et 

al. 2003; Fait et al. 2005; Ludewig et al. 2008).

So far, GABA has been found in all plant species investigated (Shelp et al. 2009). It has 

been mostly considered as a metabolite somehow involved in the control of C/N 

balance and in anaplerotic alimentation of the Krebs cycle (Fait et al. 2008). Beyond, 

function of GABA in plants is far from being revealed. Several findings started a 

discussion about functions of GABA as a signaling compound in plant growth and 

development (Bouche et al. 2004). For example, in Arabidopsis thaliana it was shown 

that pollen tube-growth in pistils as well as hypocotyl- and root-growth depend on 

controlled low GABA levels (~1 nmol g-1 DW) (Palanivelu et al. 2003; Renault et al.

2011). Again in Arabidopsis, low GABA levels are important and a prerequisite for E-2-

hexenal-induced root growth inhibition (Mirabella et al. 2008). In all these cases it was 

demonstrated that mutations in the same gene (GABA-T) -amino butyric 

acid transaminase, caused enhanced GABA levels in the resulting pop2 and her1

mutant plants (Mirabella et al. 2008; Palanivelu et al. 2003; Renault et al. 2011). The 

increased endogenous concentration of GABA seems to be the reason for impaired cell 

elongation in the mutants and the corresponding phenotypes (Renault et al. 2011).

Other studies demonstrated that GABA is involved in the differentiation of the vascular 

system in pine (Pinus pinaster) seedlings (Molina-Rueda et al. 2015). Shelp et al.
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(2006) also suggested that GABA might be involved in the communication between 

plants and other organisms such as fungi, bacteria and certain invertebrates (Shelp et 

al. 2006).

For many years it is known that GABA accumulates in plants upon various abiotic stress 

challenges such as mechanical stimulation and tissue damage, salt and cold stress 

(Kinnersley et al. 2000; Ramputh et al. 1996; Renault et al. 2010; Shelp et al. 1999; 

Wallace et al. 1984). GABA is also suggested to be involved in plant defense against 

herbivorous insects (Bown et al. 2006; Huang et al. 2011; Mithöfer et al. 2012). This 

hypothesis is based on several facts and observations: (i) GABA is known as an 

inhibitory neuromuscular transmitter acting at GABA-gated chloride channels in 

invertebrates, including insects, where it could affect normal development when 

ingested by feeding (Bown et al. 2006; Shelp et al. 2009). Thus, the presence of GABA 

might deter feeding of herbivorous insect as shown for Choristoneura rosaceana

(oblique-banded leafroller) larvae raised on synthetic diet (Ramputh et al. 1996). (ii) 

Leaf tissues of soybean (Glycine max) and tobacco (Nicotiana tabacum) that were only 

slightly wounded by crawling insect species (C. rosaceana and the tobacco budworm, 

Heliothis virescens, respectively) showed 4- to 12-fold enhanced GABA accumulation 

within 5 to 10 min (Bown et al. 2002). (iii) Transgenic N. tabacum plants with elevated 

GABA levels due to constitutive transgenic expression of a GAD enzyme were more 

resistant to both H. virescens larvae and Meloidogyne hapla, the root-knot nematode 

(Bown et al. 2006; MacGregor et al. 2003; McLean et al. 2003).

In 2006, Alan W. Bown and colleagues postulated in an opinion article “…that wounding 

stimulates gamma-aminobutyrate (GABA) accumulation in plants, which in turn deters 
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herbivory by invertebrate pests” (Bown et al. 2006). Nearly a decade later, there is still a 

lack of experimental proof concerning the herbivory-related stimulus that is necessary 

and sufficient to induce GABA accumulation in plant leaves and whether this GABA 

contributes to the plants’ defense. Here, we address these questions systematically. 

Moreover, many herbivory- or wounding-related defense responses in plants are 

strongly depending on and mediated by the well-studied jasmonates, fatty acid-derived 

phytohormones (Mithöfer et al. 2009; Wasternack 2007). Thus, we also examined 

whether the induced defense of GABA accumulation is a jasmonate-regulated process.

Materials and methods

Plant and insect material, growth and plant treatment

4-5 week old Arabidopsis thaliana plants (wild-type: ecotype Col-0; mutants: gad12,

gad12 x pop2-5, jar1) were used for all experiments. All plants were grown as described 

elsewhere (Vadassery et al. 2012). Larvae of generalist herbivore Spodoptera littoralis

were hatched from eggs and reared on an agar-based optimal diet at 23–25°C with 8 h 

light/ 16 h dark cycles (Bergomaz et al. 1986). For 7 d feeding assay, 1st instar larvae

were used (they were kept in light for 3 d after hatching). The larvae were pre-weighed

to ensure equal starting conditions for all experiments. For short term feeding assays (3 

h), 4th instar S. littoralis larvae which were starved overnight prior to plant feeding were 

used. For coronalon treatment the plant was sprayed with 1 ml of a 50 μM solution 

(0.1% ethanol, equivalent to 50 nmol) or solvent control and incubated with a cover to 

prevent evaporation.
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Mechanical wounding was done like described earlier using MecWorm (Scholz et al.

2014). To discriminate between a local and a systemic accumulation of GABA, leaves of 

plants were counted according to (Farmer et al. 2013). Leaf number 8 was treated with 

MecWorm for 1.5 h; leaf 8 (local) as well as different systemic leaves (5, 9, and 11) 

were harvested. 

S. littoralis growth inhibition assay with GABA

To determine growth effects of GABA on S. littoralis, 2nd instar larvae were reared on 

artificial diet (see above) containing defined amounts of GABA (solved in water). A 0.5 

M GABA stock solution was diluted several times; 100 μL of each were dropped on 

weighed pieces (1 g) of the artificial diet to get final concentrations of 0, 0.01, 0.1, 0.5 

and 1 μmol GABA (g diet)-1. All insects were kept separated. The food was renewed 

every second day while the GABA concentration was maintained. The larval weight was 

determined before the experiment was started (day 0) and after 7 days of feeding. To 

calculate the growth inhibition, the measured increase in weight at different GABA 

concentrations was correlated with the control (no GABA, set to 100%).

Generation of single, double and triple mutants 

The seeds of the single mutants gad1 (At5g17330; SALK_017810), gad2 (At1g65960; 

GK_474E05) and pop2-5 (At3g22200; GK_157D10) were obtained from the respective 

stock centers. F2 plants were screened for homozygousity by genotyping. For that, 

genomic DNA extraction from the individual plants was carried out as follows. Leaf 

samples were collected in 1.5 mL Eppendorf tubes containing 2-3 glass beads of 2 mm 



Manuscripts

66 
 

in size and snap-frozen in liquid nitrogen. The samples were crushed to powder using a 

tissue lyzer (Qiagen, Cat No 85220) for three minutes at a frequency of 20 s-1. Then, 

200 L of extraction buffer (0.2 M Tris HCl pH 7.5, 25 mM EDTA, 0.5% SDS and 250 

mM NaCl) was added and homogenized. The mixture was spun down for one minute at 

14,000 rpm, and 150 L of the supernatant was transferred into new tubes. Next, an 

equal volume of 100% isopropanol was added, mixed and incubated at room 

temperature for five minutes. Finally, the mixture was spun down at 14,000 rpm for five 

minutes, and the pellet was dissolved in 100 L ddH2O. PCR analysis was performed 

using 2 L of the DNA extract. For the generation of the gad12 double mutant, the 

respective single mutants were crossed by emasculating the mother plant followed by 

pollination with the pollen from the male parent. For the isolation of homozygous double 

mutants, a similar procedure was followed as for the single mutants. The triple mutant 

was generated by crossing the homozygous gad12 double mutant with the homozygous 

pop2-5 mutant. The screening procedure was carried out as described above.  

RNA extraction, cDNA synthesis and RT-PCRs for mutant characterization 

Leaf samples (~100-200 mg) were collected from Arabidopsis plants and snap-frozen in 

liquid nitrogen. RNA extraction was carried out as described before with minor 

modifications (Logemann et al. 1987). Briefly, frozen tissue was crushed to powder 

using a pre-cooled electrical drill machine. Immediately, 1 mL of Z6 buffer (8 M 

guanidinium hydrochloride, 20 mM MES, 20 mM EDTA, pH 7.0) containing 0.7% (v/v) -

mercaptoethanol was added and homogenized by vortexing. Next, 500 L PCI (phenol: 



Manuscripts

67 
 

chloroform: isoamylalcohol 25:24:1) was added and mixed by inverting the tube 10-15

times. After incubation for three minutes at room temperature, samples were spun down 

for ten minutes at 4oC with 14,000 rpm. The aqueous phase (700 L) was transferred to 

a new tube and 1/20 volumes acetic acid (1 M) and 0.7 volumes ethanol (100%) was 

added, mixed and incubated at room temperature for ten minutes. The mix was spun 

down with 14,000 rpm for ten minutes at 4oC. The pellet was then washed first with 500 

L of sodium acetate pH 5.0 followed by a second wash with 500 L 70% ethanol. 

Finally, the pellet was air-dried and dissolved in 100 L of RNase-free distilled water. 

Prior to cDNA synthesis the total RNA was treated with DNase (Promega) for one hour 

at 37oC. The concentration of RNA was quantified using a NanoDrop (NanoDrop 1000 

V.3.8), and the integrity of the RNA was verified on a 1% agarose gel. The cDNA was 

synthesized from 1.5 g of total RNA in 20 L of total reaction mixture according to the 

manufacturer’s protocol (Bioscript). The synthesized cDNA was diluted three times and 

the expression of the target genes was analyzed using qRT-PCR. Used primers are 

listed in Table S1. The primers discriminating between the GAD paralogs have 

previously been reported except for GAD5 (Renault et al. 2010).

Quantification of phytohormones

For quantification of phytohormones 250 mg of sample was weighed and frozen in liquid 

nitrogen. The extraction procedure and determination of JA and JA-Ile was carried out 

as described before (Vadassery et al. 2012).
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Quantification of –aminobutyric acid (GABA)

Approximately 250 mg of fresh leaves were weight. The –aminobutyric acid (GABA) 

was extracted with 2 mL of methanol  and the resulting extract was diluted in a ratio of 

1:20 (v:v) in water containing the U-13C, 15N labelled amino acid mix (algal amino acids 

13C, 15N, Isotec, Miamisburg, USA, at a concentration of 10 μg of the mix per ml). GABA 

in the diluted extracts was directly analyzed by LC-MS/MS. Chromatography was 

performed on an Agilent 1200 HPLC system (Agilent Technologies, Böblingen, 

Germany). Separation was achieved on a Zorbax Eclipse XDB-C18 column (50 x 4.6

mm, 1.8 μm, Agilent Technologies). Formic acid (0.05%) in water and acetonitrile were 

employed as mobile phases A and B respectively. The elution profile was: 0-1 min, 3%B 

in A; 1-2.7 min, 3-100% B in A; 2.7-3 min 100% B and 3.1-6 min 3% B in A. The mobile 

phase flow rate was 1.1 mL/min. The column temperature was maintained at 25 °C. The 

liquid chromatography was coupled to an API 5000 tandem mass spectrometer (Applied 

Biosystems, Darmstadt, Germany) equipped with a Turbospray ion source operated in 

positive ionization mode. The instrument parameters were optimized by infusion 

experiments with pure standards. The ionspray voltage was maintained at 5500 eV. The 

turbo gas temperature was set at 700 °C. Nebulizing gas was set at 70 psi, curtain gas 

at 35 psi, heating gas at 70 psi and collision gas at 2 psi. Multiple reaction monitoring 

m/z

DP 51, CE 17), U-13C, 15N-Ala (m/z

quadrupoles were maintained at unit resolution. Analyst 1.5 software (Applied 

Biosystems) was used for data acquisition and processing. GABA in the sample was 

quantified using U-13C, 15N-Ala applying a response factor of 1.0.
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RESULTS AND DISCUSSION

Two of five GAD genes are mainly expressed in shoots and roots

In Arabidopsis thaliana, five GAD genes have been identified (Shelp et al. 1999). Here, 

we analyzed the relative expression of all five GAD paralogs in shoots and roots of wild-

type plants. GAD1 transcripts were mainly detected in roots (Figure 1a) and GAD2

transcripts were abundantly detected in shoots and in considerable amounts in roots 

(Figure 1a), observations in line with previous findings (Turano et al. 1998; Zik et al.

1998). GAD4, on the other hand, exhibited a weak expression in shoots and an even 

weaker expression in roots (Figure 1). GAD4 expression was also detected in flowers 

and siliques (Figure S1). The transcripts of GAD3 and GAD5 were neither detectable in 

shoots nor in roots. However, the transcript of GAD3 could be detected in young 

siliques (Figure S1), and GAD5 transcripts were detected in flowers (Figure S1). Indeed, 

strong expression of GAD5 in gametes of Arabidopsis thaliana has been reported in 

publically available expression resources (Hruz et al. 2008; Winter et al. 2007).

A gad12 double mutant contains low GABA amounts in shoots and roots

Next, we asked whether a simultaneous knock out of GAD1 and GAD2 would lead to 

major changes in the GABA pools of shoots and roots. To test that, we generated a 

gad12 double mutant by crossing single gad1 and gad2 T-DNA insertion mutants 

(Figure S2a, b) and confirmed the absence of full-length transcripts (Figure S2c). 

However, a truncated GAD2 transcript that consisted of exon 1, exon 2 and a part of 

exon 6, which is unable to encode a functional GAD, could be detected (Figure S2c,d).

GADs belong to the pyridoxal phosphate-dependent aspartate aminotransferase super-
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family of proteins (Marchler-Bauer et al. 2011). The residues important for binding of 

pyridoxal phosphate in A. thaliana GAD2 protein have been predicted to be Ser-125, 

Ser-126, IIe-129, IIe-208, Asp-243, Ser-246, Ser-273 and Lys-276 in the native protein. 

Moreover, Lys-276 is predicted to be involved in catalytic activity (Marchler-Bauer et al.

2011). These co-factor binding and catalytically active residues are encoded by bases 

located in exons 3, 4 and 5 of the native transcript. However, in the truncated version of 

the GAD2 transcript, those exons were absent, and hence the protein very unlikely 

remains any decarboxylase activity. Furthermore, a premature stop codon has been 

detected close to the junction between the 2nd and the 6th exon to further shorten the 

unlikely functional protein (Figure S2d).

The gad12 double mutant revealed a 20-fold reduction of GABA, compared to the wild

type (Figure 2). Despite reports indicating the possible synthesis of GABA from the 

degradation of polyamines (Bouchereau et al. 1999; Fait et al. 2008; Shelp et al. 2012),

GABA in A. thaliana seems to be mainly produced from the decarboxylation of 

glutamate by the activity of GADs. However, GABA contents of gad12 double mutants 

were not below the detection limit, either because of the above mentioned degradation 

of polyamines fueling GABA synthesis or because of low expression of GAD4 (Figure 

1). To examine whether an additional compensatory expression of GAD paralogs in 

gad12 mutants occurred, the transcript levels of GAD4 were analyzed in both shoots 

and roots and compared to the wild type. GAD4 transcripts were found to be up-

regulated (Figure 1b) and might be sufficient to explain the presence of GABA in the 

double mutant.
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An additional knock-out of GABA-T gene in the gad12 double mutant 

caused higher GABA contents in shoots and roots

The GABA content of plant organs is not only determined by its synthesis. Its

degradation by GABA-T activity also affects the accumulation of GABA, as was also

discussed by Renault et al. (Renault et al. 2010). We assumed that the low GABA 

contents in gad12 mutants would be elevated when breakdown of GABA is prevented 

due to the absence of GABA-T activity. Hence, we created a triple mutant by crossing 

the gad12 double mutant to a gaba-t (pop2-5) mutant. Pop2 mutants were previously 

shown to accumulate high GABA contents in A. thaliana (Ludewig et al. 2008; 

Palanivelu et al. 2003; Renault et al. 2011). Homozygous knock-outs of all three genes 

of the triple mutant were verified by PCR (Figure S3). The gad12 x pop2-5 triple mutant 

contained seven times more GABA than the wild-type and half as much compared with 

the pop2-5 single mutant (just given for comparison) (Figure 2). It is likely that the triple 

mutant slowly accumulates GABA with time because of the low GABA synthesis rate 

due to the absence of the most prominent GAD activities. In contrast, accumulation of 

GABA might be more rapid in pop2-5 single mutants, i.e. the proportion of GABA 

contents between wild-type, gad12 x pop2-5 triple and pop2-5 single mutants might not 

be constant with time but changes with developmental stages. 

Triple mutant plants are less susceptible to Spodoptera littoralis feeding

Due to the finding that higher GABA levels can affect insects (Bown et al. 2006; 

MacGregor et al. 2003; Ramputh et al. 1996) the influence of different endogenous 

GABA contents in planta was investigated in parallel in an insect herbivore feeding 
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assay. In contrast to former experiments (Bown et al. 2006; MacGregor et al. 2003), we 

did not look for feeding preferences but for insect performance on different mutant lines. 

Therefore, we carried out a bio-assay employing the different plant lines available, i.e. 

wild type, gad12, and gad12 x pop2-5 plants, and herbivorous larvae of the generalist 

lepidopteran species Spodoptera littoralis. While S. littoralis larvae feeding on gad12

mutant plants showed the same increase in body weight as on wild type, the larvae 

feeding on gad12 x pop2-5 plants gained significantly less weight (Figure 3). The 

constitutive accumulation of GABA over time in this mutant (Figure 2) might contribute 

to the enhanced resistance against S. littoralis feeding. Interestingly, lower GABA level 

in the gad12 mutant did not result in an altered feeding behavior of S. littoralis larvae 

compared to the wild type (Figure 3) suggesting that this insect species can tolerate 

some basic level of the defensive compound GABA. To follow up this idea, 2nd instar S. 

littoralis larvae were reared on artificial diet containing different amounts of GABA 

(Figure 4). Concentrations were chosen between 0 and 1 μmol GABA (g diet)-1; these 

concentrations covered the GABA levels determined for the investigated WT and 

mutant lines (Figure 2). Interestingly, lower concentrations of GABA between 0 and 0.08 

μmol g-1, which resembled the constitutive GABA content in A. thaliana Col-0 wild type 

plants, did not significantly affect S. littoralis larvae growth (Figure 4). The increase in 

larval weight is just reduced about 5% compared to water treatment. This observation 

suggests that S. littoralis indeed has certain tolerance to GABA in the food source. A 

significant decrease in growth was observed for a GABA concentration of 1 μmol g-1;

here the larvae gained 23% less weight compared to the control (Figure 4). Thus, these 

results can explain the S. littoralis feeding behavior on the different GABA mutant lines 
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where the GABA content of both wild type and the gad12 mutant did not cause any 

growth inhibition (Figure 3) but, in contrast, the GABA content of the gad12 x pop2-5

triple mutant induced an extrapolated decrease in growth of about 15%. However, this 

alone cannot explain the results shown in Figure 3, but an increased GABA level very 

likely contributes to the whole array of defenses against S. littoralis.

A similar finding for a species-specific tolerance has been described for S. littoralis that 

fed on Nicotiana attenuata mutant plants (irMPK4 x irCOI1), where a jasmonate-

independent defense pathway could not inhibit growth of S. littoralis larvae in contrast to 

larvae of Manduca sexta (Hettenhausen et al. 2013).

Spodoptera littoralis feeding- and wounding-induced jasmonate induction is 

not affected in GABA mutants

Knowing that many plant defense reactions against herbivorous insects are regulated 

by jasmonates (Mithöfer et al. 2009; Wasternack 2007) we decided to further investigate 

the contribution and involvement of this phytohormone class on GABA accumulation. 

Thus, the levels of jasmonic acid (JA) and its bioactive derivative, (+)-7-iso-jasmonoyl-L-

isoleucine (JA-Ile) (Fonseca et al. 2009), were determined in Arabidopsis wild type and 

the GABA mutant plants upon herbivore treatment. 

As shown in figure 5a, the different basic GABA concentrations present in the three 

plant lines are obvious. In wild type and in the triple mutant GABA level increased over 

time. The concentrations of JA and JA-Ile also clearly increased due to larvae feeding 

but no significant differences were detectable between wild-type and the two mutant 
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lines (Figures 5b, c). Obviously, the different levels of GABA did not affect the 

jasmonate level. 

Insect herbivory is a combination of two events, first of all wounding of plant tissues and 

second the introduction of insect-derived compounds that come in contact with the 

tissues during the feeding process (Mithöfer et al. 2008). Using a robotic caterpillar, 

MecWorm, we are able to mimic the behavior of a feeding S. littoralis larva in order to 

investigate the impact of the isolated wounding process without the contribution of 

insect-derived compounds (Mithöfer et al. 2005). As shown in figure 6, MecWorm 

treatment alone caused the accumulation of GABA in wild-type plants. Wounding 

disrupts cell structure and releases the acidic vacuole content. As shown for carrot 

suspension cells, acidic pH values stimulate GAD activity in vivo, and as a consequence 

thereof, the generation and accumulation of GABA (Carroll et al. 1994). Compared with 

insect feeding (Figure 5a), MecWorm wounding caused about eight-fold higher GABA 

accumulation in wild-type plants due to the facts that more leaf material was wounded 

and, in addition, the leaf material was not fed up by the insects. As expected, in the 

knock out plant gad12 no GABA accumulated (Figure 6a). Jasmonate levels increased 

significantly upon wounding; however, the amount of JA and JA-Ile in the controls and in 

the treated plants was similar, independent on the plant lines (Figures 6b, c). 

Wounding induces GABA accumulation in adjacent leaves

An interesting feature of the GABA-forming GAD enzyme is its activation at acidic 

conditions whereas under neutral conditions the activity depends on Ca2+/calmodulin 

(Bown et al. 2006; Snedden et al. 1995). Thus, wounding and the accompanying 
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acidification of the cytosol can explain GABA accumulation in the treated, local leaf. 

Unfortunately, data for Ca2+/calmodulin activation of GAD is only based on in vitro

studies. Knowing that wounding and herbivory can also stimulate a systemic increase of 

the cytosolic Ca2+ concentration (Kiep et al. 2015), the systemic accumulation of GABA 

was investigated upon wounding of a defined leaf with MecWorm. As shown in Figure 7, 

mechanical damage of leaf 8 did not only cause a significant increase of GABA 

concentration in the local leaf but also in the adjacent leaf 5, which is directly connected 

to leaf 8 (Farmer et al. 2013). Although no response was detected in other leaves, this 

result strongly suggests that the induced Ca2+ increase in non-wounded tissue can 

trigger the activity of GAD, supporting in vivo the statement of Snedden and colleagues 

(1995) that systemic GABA synthesis might depend on Ca2+ signaling. 

GABA elevation is jasmonate independent

To further investigate whether the accumulation of GABA might be induced by 

jasmonates, we treated Arabidopsis wild-type plants with the synthetic JA-Ile mimic 

coronalon that has been shown to induce all typical JA-Ile effects (Nakamura et al.

2014; Schüler et al. 2004; Svoboda et al. 2010). As can be seen in figure 8, no changes 

in GABA concentration were detectable within three hours after treatment with 50 μM 

coronalon, while JA-biosynthesis and JA-responsive genes were induced indicating a 

sufficient concentration of coronalon (Figure S4). This result is clearly in contrast to the 

results obtained in wild-type plants where GABA accumulation was detected upon 

herbivory (Figure 5a) or mechanical wounding (Figure 6a) within the same period, 

indicating that GABA accumulation is not jasmonate dependent. In order to support this 
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result, we performed an additional experiment where wild-type Arabidopsis and a 

jasmonate signaling mutant, jar1 that is unable to generate JA-Ile (Staswick et al. 2002),

were treated with S. littoralis larvae. Whereas in wild-type and jar1 control plants the 

level of GABA was the same, after 3 h of feeding in wild-type as well as in jar1 plants a 

significant higher concentration of GABA was detected compared to the respective 

controls (Figure 9). This was an expected result because the feeding process causes 

GABA accumulation (Figure 5a). More interesting is the finding that in jar1 plants a 

significant increase of GABA could be measured compared with wild type plants (Figure 

9). On the one hand this shows again that jasmonate-based signaling is not involved in 

GABA accumulation and on the other hand that on defense-impaired jar1 plants more 

GABA could be generated very likely because the larvae fed more. 

CONCLUSIONS

The non-proteinogenic amino acid -aminobutyric acid, GABA, is widespread in 

eukaryotes including invertebrates, where it activates Cl- -channels at neuromuscular 

junctions. For plants, various physiological role(s) for GABA are still under discussion. 

Here, experimental evidence based on GABA-reduced and GABA-enriched Arabidopsis 

thaliana mutants demonstrates that wounding of plant tissue and cell disruption caused 

by feeding insects is sufficient to induce a rapid, jasmonate-independent GABA 

synthesis and accumulation. When ingested the enhanced GABA levels become toxic 

for the insect. Similar to the tissue- and cell disruption-mediated formation of toxic 

isothiocyanates from glucosinolates and hydrogen cyanide (HCN) from cyanogenic 

glucosides (Mithöfer et al. 2012), respectively, GABA formation from glutamate also 



Manuscripts

77 
 

represents a first line of general and rapid defense against invertebrate pests. Thus, 

GABA contributes to the arsenal of direct and local plant defenses.
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Figure legends

Figure 1. Expression analysis of GAD genes in Arabidopsis shoots and roots.

Plants of five-week-old wild-type (a) and four-week-old wild-type and gad12 mutant (b) 

were used. GAD3 and GAD5 transcripts were not detectable. Values are means of 

three biological replicates. Error bars represent the standard error of means; RE -

relative expression.

Figure 2. GABA amounts of four-week-old wild-type (WT), gad12, gad12 x pop2-5

and pop2-5 plants. All plants were grown under greenhouse conditions and GABA was 

quantified in leafs. Values are means of eight independent plants. Error bars represent 

the standard error of means. Statistically significant differences between WT and GABA 

mutant plants were analyzed by One-Way ANOVA (p<0.05, SNK-test) and are indicated 

by different letters.

Figure 3. Feeding assay of Spodoptera littoralis larvae on Arabidopsis wild-type 

(WT), gad12 and gad12 x pop2-5 plants. S. littoralis 1st instar larvae were pre-weighed 

and 3 larvae were placed on each plant. The larval weight (mean ± SE) was measured 

after 7 d of feeding. The total number of larvae weighed (N) is indicated in the bars. 

Experiments were repeated 4 times independently. Statistically significant differences 

between WT and GABA mutant plants after feeding were analyzed by One-Way 

ANOVA (p<0.05, SNK-test) and are indicated by different letters.
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Figure 4. Effects of GABA on S. littoralis growth. Mean (± SE, n=18-20) gain of 

weight of 2nd instar S. littoralis larvae feeding on artificial diet containing 0, 0.01, 0.1, 0.5 

and 1 μmol GABA /g-1. Larval weight was determined after 7 days of feeding and the 

increase in weight correlated with the starting weight. Gain of weight was calculated 

relative to the weight gained after control treatment without GABA (= 100%). Statistically 

significant differences between the control and the respective treatment was analyzed

by t-test (for each concentration separately), *P=<0.05. D double mutant (gad12), WT 

wild type, T triple mutant (gad12 x pop2-5).

Figure 5. GABA and Jasmonate levels upon Spodoptera littoralis herbivory in 

Arabidopsis wild-type (WT), gad12 and gad12 x pop2-5 plants. Mean (± SE, n=10) 

levels of GABA (a), JA (b) and JA-Ile (c) in Col-0 WT (white), gad12 (grey) and gad12 x

pop2-5 (black) plants after S. littoralis feeding (2nd instar) for 1 and 3 h. Hormone and 

GABA levels were measured only from local S. littoralis fed leaves. Untreated leaves 

from untreated plants were used as controls. Statistically significant differences between 

hormones in WT and GABA mutant plants after feeding were analyzed by One-Way 

ANOVA (p<0.05, SNK) and are indicated by different letters.

Figure 6. GABA and Jasmonate levels upon MecWorm treatment in Arabidopsis 

wild-type (WT), gad12 and gad12 x pop2-5 plants. Mean (± SE, n=6) levels of GABA 

(a), JA (b) and JA-Ile (c) were determined in control plants (white) and 3 h after 

treatment (black). Hormone and GABA levels were measured only from treated leaves. 

Untreated leaves from untreated plants were used as controls. Statistically significant 
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differences between hormones in different mutants were analyzed by One-Way ANOVA 

(p<0.05, SNK) and are indicated by different letters. Statistical significant differences 

between control and treated plants were analyzed by t-test, *P=<0.05, **P= <0.01, ***P 

= <0.001. 

Figure 7. Accumulation of GABA in individual Arabidopsis leaves after MecWorm 

treatment. Mean (± SE, n=5) levels of GABA were determined in individual leaves of 

untreated control plants and plants after treatment for 1.5 h with MecWorm. In treated 

plants, leaf 8 was subjected to mechanical damage and systemic leaves 5, 9 and 11, 

and treated leaf 8 were analyzed for GABA level. Statistically significant differences 

between the GABA level in the same leaf of the control and treated plant were analyzed

by t-test (for each leaf separately, p< 0.05, Mann-Whitney-U test), **P=<0.01.

Figure 8. Accumulation of GABA after coronalon treatment in wild-type (WT) 

plants. Mean (± SE, n=10) levels of GABA were determined  after spray with solvent 

control (0.1 % ethanol, white) or 50 μM coronalon 1 and 2 h after treatment. Statistically 

significant differences between the treatments were analyzed by One-Way ANOVA 

(p<0.05, SNK) and are indicated by different letters.

Figure 9. Accumulation of GABA after S. littoralis feeding in wild-type (WT) and 

jar1 plants. Mean (± SE, n=6) levels of GABA were determined after a feeding period of 

3 h. Hormone and GABA levels were measured only from local S. littoralis-fed leaves. 
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Untreated leaves from untreated plants were used as controls. Statistically significant 

differences between the treatments were analyzed by t-test, *P=<0.05, ***P = <0.001. 

Figure S1. GAD3-5 expression in different Arabidopsis tissues. Leaves, flowers 

and young siliques of wild-type and gad12 plants were investigated, all grown under 

greenhouse conditions. Specific primers amplifying the respective genes were used.

Figure S2. Molecular characterization of gad1 and gad2 T-DNA insertion mutants.
(a) Schematic representation of the T-DNA insertions in GAD1 and GAD2 genes. (b)

Screening of gad1 and gad2 mutants with gene- and T-DNA-specific primer 

combinations. F, R and LB represent gene-specific forward, reverse and T-DNA-specific 

primers, respectively. (c) Transcript analysis of GAD1 and GAD2 genes from wild-type 

(Wt) and gad12 plants in shoots and roots. (d) Sequence of the truncated GAD2

transcript. Sequences in blue, brown and purple represent exon 1, exon 2 and exon 6, 

respectively. Sequences in red are of unknown origin, probably intron, but inserted 

between exon 2 and exon 6. Sequences in bold black represent a stop codon due to a 

frame shift.

Figure S3. Genotyping of gad12 x pop2-5 triple mutants. For the analysis T-DNA-

and gene-specific primers were used. F, R and LB represent gene-specific forward, 

reverse and T-DNA-specific primers, respectively.

Figure S4. Induction of JA-biosynthesis and JA-responsive genes upon 
coronalon spray.
Normalized fold expression (± SE, n=6) of LOX2, AOS, JAR1, JAZ10 and VSP2 after 1 

(white) and 3 h (black) of coronalon treatment. Plants were sprayed with 1 ml of 50 μM 

coronalon (50 nmol). Expression was normalized to the plant RPS18 mRNA level. For 

control, plants were sprayed with the same volume of water, its expression level was set 

to 1.
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4 Unpublished results

4.1 Supplemental experiment for manuscript 2 (Scholz et al., 2014)

The JAR1 enzyme is encoded by a gene belonging to the GH3 gene family (Staswick et al.,

2002; Staswick and Tiryaki, 2004). Genes of this family encode for different enzymes which 

catalyze the conjugation of amino acids to IAA, JA or SA (Staswick et al., 2005; Terol et al.,

2006). To exclude that other enzymes encoded by the GH3 gene family are able to conjugate Ile 

with JA in the JAR1 conjugation assay, the assay was redone with the jar1 mutant included in 

the setup (Figure S 1).

 

Figure S 1. Level of JAR1 activity in Arabidopsis Wild-Type (WT), cml37 and jar1 plants after herbivory.

Mean conjugation activity by formation of JA-Ile (± SE, n = 6) by JAR1 in Col-0 WT (black), cml37 (dark gray) and jar1 (light 
gray) plant protein extract after Spodoptera littoralis feeding for 1 h. Phytohormone levels were measured only from local S. 
littoralis-fed leaves. Untreated leaves from untreated plants were used as controls (0 h). Statistically significant differences 
between phytohormones in WT and cml37 plants and between WT and jar1 plants after feeding were analyzed by t-test for each 
time point separately, * P < 0.05, ** P < 0.01, *** P < 0.001.

In the jar1 mutant, no production of JA-Ile was observed over the whole time span (0-5 h, Figure 

S 1B). This indicates that, in the used plant protein extracts, no other enzyme is capable of 

conjugating Ile with JA. So this result supports the hypothesis that the observed reduced 

production of JA-Ile in cml37 mutant over time corresponds to a reduced activity of JAR1 

(Scholz et al., 2014).
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4.2 Supplemental experiment for manuscript 4 (Scholz et al., 2015, Plant Cell & 

Environment, submitted)

In previous experiments, it was observed that cml37 mutants show additionally to a reduced 

elevation of phytohormones also an altered accumulation of GABA after Spodoptera littoralis

feeding. To study this observation, the content of GABA was determined in cml37 plants treated

with MecWorm (Figure S 2A), mechanical wounding followed by application of oral secretion 

(MW+OS, Figure S 2B) and Spodoptera littoralis feeding (Figure S 2C). 

Figure S 2. Accumulation of GABA in Arabidopsis Wild-Type (WT) and cml37 plants in response to different herbivory-
related treatments.

Mean content of GABA (± SE, n = 4-8) in Col-0 WT (white) and cml37 (black) plants after MecWorm treatment (A), MW+OS 
(B) and Spodoptera littoralis feeding (C) for 0-3 h. GABA levels were measured only from local treated or S. littoralis-fed 
leaves. Untreated leaves from untreated plants were used as controls (0 h). Statistically significant differences between GABA 
levels in WT and cml37 plants after the respective treatment were analyzed by t-test for each time point separately, * P < 0.05, ** 
P < 0.01.

A reduced accumulation of GABA in tissue of cml37 plants was observed in response to either 

wounding of the plant by MecWorm (Figure S 2A) or the feeding insect (Figure S 2C) and 
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application of elicitors in oral secretion (Figure S 2B). This observation corresponds to the 

results obtained for the S. littoralis feeding assay in cml37 mutant lines, where they gain more 

weight compared to wild type plants (Scholz et al., 2014). The result suggests that a lower level 

of GABA in cml37 plants is another fact triggering the significantly higher increase of S.

littoralis larval weight. 
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5 Discussion
To survive and reproduce successfully as sessile organisms, plants must adapt to drastically 

changes in their environment. This includes challenges of abiotic conditions related to the 

habitat, like drought or salt stress, temperatures and radiation. Additionally, the plant needs to 

adjust and react to a multitude of stimuli from the biotic environment, including pathogens and 

nematodes or fungi. The attack of herbivorous insects can cause a severe loss of plant biomass 

resulting in decreased plant viability (Stowe et al., 2000). In the herbivore feeding process, the

damage of plant tissue is diverse - caused by different insect feeding strategies. While piercing-

sucking insects induce only a small lesion, chewing insects consume huge parts of leaves. The 

wounding of plant tissue is one of the major stress signals perceived and transduced by the plant. 

A mechanical wounding alone is able to induce several components of plant defense. So it was 

shown that the robotic larva MecWorm, mimicking the insect feeding dynamic, could induce a 

volatile emission and ROS production in lima bean which was similar to the one observed after 

herbivore feeding. At the same time, MecWorm treatment could neither induce membrane 

depolarization nor the change of cytosolic calcium level, which are able to induce more 

downstream signaling pathways (Mithöfer et al., 2005; Bricchi et al., 2010).

While feeding on the plant tissue, insects simultaneously provide a complex mixture of HAMPs, 

which act as additional elicitors of plant defense mechanisms (Alborn et al., 1997; Maischak et 

al., 2007; Mithöfer and Boland, 2008; Mithöfer and Boland, 2012; Guo et al., 2013). So it was 

shown that Spodoptera OS could successfully induce membrane depolarization, elevations in 

cytosolic calcium level, also in systemic leaves, and the expression of elicitor-regulated genes 

(Maffei et al., 2004; Maischak et al., 2007; Vadassery et al., 2012a; Guo et al., 2013; Kiep et al.,

2015). These results indicate that full activation of plant defense upon herbivory is dependent on

the perception of wound- and elicitor-induced signals. Different herbivory-related treatments 

(see Figure 8) are applied to disentangle the complex signaling process.

To defend against attacking insects, the plant has developed a complex network of herbivore 

defense pathways. Since the production of defensive compounds, which primarily belong to the 

class of secondary metabolites, is very costly for the plant, the defensive network includes 

constitutive as well as inducible defense pathways (War et al., 2012). Several important 
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components of these defense pathways are well studied, but the activation, regulation and 

interaction between different pathways is still not completely known (Wu and Baldwin, 2010).

The best-studied defense pathway responding to herbivory and wounding is the jasmonate 

pathway. Key components of jasmonate phytohormones are JA and its bioactive isoleucine 

conjugate JA-Ile (Wasternack, 2007; Howe and Jander, 2008; Chini et al., 2009; Fonseca et al.,

2009b; Mithöfer et al., 2009; Wasternack and Kombrink, 2010). By interaction with the SCF-

COI1-receptor complex, downstream signaling components like JA-responsive gene expression 

is induced (Devoto et al., 2002; Thines et al., 2007; Fonseca et al., 2009a). Next to the induction 

of jasmonate phytohormones, secondary metabolites such as glucosinolates, alkaloids or 

flavonoids play a role in herbivore defense (Glawischnig et al., 2003; Steppuhn et al., 2004; 

Halkier and Gershenzon, 2006; Maffei et al., 2006; Falcone Ferreyra et al., 2012; Mithöfer and 

Boland, 2012). Also for other compounds like the non-protein amino acid, GABA, a role in plant 

defense was postulated (Bown et al., 2006).

By studying the complex network of plant defense, it became clear that many defense pathways 

are calcium-mediated and that a stimulus-elicited elevation of cytosolic calcium is an early event 

inducing downstream signaling components (Maffei et al., 2004; Maffei et al., 2007; Vadassery

et al., 2012a). Upon herbivore feeding, stress stimuli like wounding or OS as well as water loss-

induced drought stress are able to initiate membrane depolarization and influx of Ca2+ into the 

cytosol, whereby the Ca2+ can originate from different external and internal stores (Maffei et al.,

2004; Mithöfer and Boland, 2008; Mazars et al., 2009; Dodd et al., 2010; Kiep et al., 2015). This 

elevation in cytosolic calcium level carries the information of the stimulus perceived (coded in 

e.g. amplitude or duration) and is further processed and decoded by different calcium sensor 

proteins to induce the downstream signaling components (DeFalco et al., 2010; Dodd et al.,

2010).

The aim of this study was to investigate the role of calmodulin-like proteins (CMLs), one group 

of calcium sensor proteins, in calcium-mediated herbivore defense pathways in the interaction of 

Arabidopsis thaliana and the generalist herbivore Spodoptera littoralis. To understand the mode 

of action, the induction pattern of different CMLs was characterized under herbivore infestation. 

To gain insight into the position of CMLs in the signaling cascade and to investigate if a 

connection between the early signaling event calcium and the induction of defense metabolites 
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can be detected, knock-out mutants of a highly herbivory-inducible CML (CML37, At5g42380)

were analyzed for its capability to modulate different defense pathways in Arabidopsis. 

Several calmodulin-like proteins are induced upon herbivory

Several studies have outlines the significance of calcium sensors (of the sensor responder group) 

in herbivore defense signaling. So it was shown that several CPKs in the model plants 

Arabidopsis thaliana and Nicotiana attenuata are involved in herbivore defense by regulating the 

JA pathway. Here the accumulation of JA and the expression of several JA-responsive genes 

were altered in mutant lines (Kanchiswamy et al., 2010; Wu and Baldwin, 2010; Hettenhausen et 

al., 2013b; Romeis and Herde, 2014). For members of the sensor relay proteins a role in 

herbivore defense was not known but assumed. For CML42, which is involved in trichome 

branching in Arabidopsis, a negative regulation of Spodoptera littoralis feeding was 

demonstrated (Dobney et al., 2009; Vadassery et al., 2012a; Guo et al., 2013). Different 

members of the CML family such as CML37, 38, 39, 40 were known to respond to mechanical 

wounding of the plant (McCormack et al., 2005).

A first microarray experiment, where Arabidopsis plants were wounded and challenged with 

insect OS, showed that several other members of the CML family were induced upon treatment

(Manuscript 1,(Vadassery et al., 2012c)). To gain insight into the level and dynamics of CML 

expression upon herbivory-related treatments, the expression patterns of different CML genes 

were analyzed with real-time PCR over the first 90 minutes. While CML11, 12, 16 and 42 show 

an early and transient expression (Figure 1, Manuscript 1, (Vadassery et al., 2012a)), CML9, 17

and 23 are expressed later and for a longer time span (Figure 2, Manuscript 1). Strikingly, the 

level of expression is very low for the tested CMLs, except for CML12 which shows an increase 

in transcript level of about 10-fold (Figure 1, Manuscript 1). This observation matches previous 

results where CML12 was shown to be highly induced by touch. Here, a fast and strong initial 

peak and a transient expression of the respective gene was observed (Braam and Davis, 1990).

The rather low expression of other CMLs in our study is also not surprising, since it was shown

that CMLs in general show only very low changes in transcript level after various stress 

treatments (McCormack and Braam, 2003; McCormack et al., 2005). CML9 is mainly involved 

in pathogen defense and is induced upon SA and Ps. syringae treatment. Here CML9 acts in 

regulating plant immunity by a flagellin-dependent signaling pathway (Leba et al., 2012). This 
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function is activated upon infestation with the pathogen and could require a more prolonged 

expression to sufficiently induce plant pathogen defense.

Interestingly CML37, another CML family member induced upon insect OS, shows also a 6-fold 

higher transcript level compared to control treatment (Figure 2C, Manuscript 2, (Scholz et al.,

2014)). The expression pattern shows a fast peak followed by a decline in transcript level after 

180 min. This dynamic suggests wounding as a major stress stimulus for induction of CML37.

MecWorm experiments confirmed that CML37 is highly induced upon mechanical damage 

alone, where the expression was up to 70-fold induced (Figure 2B, Manuscript 2). In real 

herbivore feeding experiments, where wounding of the plant tissue and OS are both present, a 

similar expression level was observed (Figure 2A, Manuscript 2). This indicates that CML37 is a 

highly wound-regulated gene like CML39 or 41, whereas CML42 was shown to be specific to 

elicitors in OS and was not induced upon mechanical wounding (McCormack et al., 2005; 

Vadassery et al., 2012a). These results indicate that several members of the CML family of 

calcium sensors are clearly induced upon herbivory and herbivory-related treatments.These 

differences in expression pattern make CMLs good candidates for regulators of different 

herbivore-induced defense pathways. Additionally, the results strongly suggest that cytosolic 

calcium elevations and their specific decoding are an important step in herbivore defense 

signaling.

Calmodulin-like proteins 37 and 42 show antagonistic regulation upon herbivory

In a previous study cml42 mutants were analyzed for their performance under herbivore 

infestation and the ability to induce herbivore defense pathways was quantified (Vadassery et al.,

2012a). It was shown that CML42 acts as a negative regulator of plant defense by interfering 

with COI1-mediated JA sensitivity and is thereby decreasing the expression of JA-responsive 

genes. In cml42 mutants Spodoptera littoralis larvae gained significantly less weight compared 

to wildtype plants (Vadassery et al., 2012a). Different from this, Spodoptera littoralis larvae 

gained significantly more weight on cml37 mutant lines indicating that CML37 acts as a positive 

defense regulator (Figure 3, Manuscript 2), though both CML37 and 42 were upregulated upon 

Spodoptera feeding. This indicates that CML37 and 42 show an antagonistic regulation of plant 

herbivore defense. Combined with the fact that both CMLs are located in the same cell 

compartments – nucleus and cytosol (Inze et al., 2012; Vadassery et al., 2012a) – this interplay 
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could be a basis for “fine-tuning” of plant defense pathways. For CML37 several interactions 

with other calcium sensors like CAMs, CMLs and CPKs was predicted, based on computational 

calculation (Supplement, Figure S3, Table S1). The mode of action as sensor relay protein 

requires an interaction with downstream targets to transduce the signal decoded (DeFalco et al.,

2010).

Figure 9. Scheme for herbivory-initiated stress response induction in Arabidopsis thaliana and the roles of CML42 and 
CML37.

Shown are the summarized stress responses of (A) CML42 to herbivory and abiotic stress (Vadassery et al., 2012a) and (B)
CML37 to herbivory (Scholz et al., 2014). Different thickness, ends and color of lines indicate different regulations by the 
respective CML: (A) dotted black line: from literature, black line: not regulated, bold black line with arrow: positive regulated, 
bold black line with block: negative regulated; (B) black line: not regulated, bold black line with arrow: positive regulated, red 
line: direct regulation by CML37, dotted red line: indirect regulation by CML37. For more details see original publications.

The antagonistic effect on Spodoptera littoralis performance feeding on Arabidopsis cml37 and

cml42 mutant plants is also reflected in the regulation of individual defense pathways (Figure 9).

While cml37 plants do not show a change in level and composition of secondary metabolites like 

glucosinolates and flavonoids, cml42 plants constitutively store more aliphatic glucosinolates 

while the content of kaempferol glycosides is decreased (Figure S4, Manuscript 2, (Vadassery et 

al., 2012a)). CML42 expression is independent of herbivory-induced jasmonate accumulation, 

while CML37 is significantly induced by JA precursor cis-OPDA (Figure 2D, Manuscript 2, 
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(Taki et al., 2005; Vadassery et al., 2012a)). The incident that CML37 is induced by cis-OPDA, 

whose production and accumulation is promoted by wounding of plant tissue (Koo et al., 2009),

points to an important role of CML37 in regulation of the jasmonate pathway.

The jasmonate pathway finally leads to the expression of anti-herbivore compounds encoded by 

JA-responsive genes (Berger et al., 1995; Bohlmann et al., 1998; Wasternack and Kombrink, 

2010; Wu and Baldwin, 2010). The transcription of these genes is catalyzed by the transcription 

factor MYC2 which is activated upon release of JAZ repressor proteins when JA-Ile binds the 

receptor COI1 (Xie et al., 1998; Devoto et al., 2002; Thines et al., 2007; Chini et al., 2009). An 

antagonistic regulation was also observed for the influence of COI1 on CML expression. Here 

CML42 up regulation is negatively regulated by COI1; CML37 expression is again contrarily 

regulated. In coi1-1 mutants, CML37 transcript is significantly less abundant than in WT plants 

indicating that the presence of COI positively regulates its expression (Figure 2E, Manuscript 2, 

(Vadassery et al., 2012a)). Additionally, in cml37 the expression of several JAZ genes (including 

wound-induced JAZ10) is increased, leading to a stronger repression of MYC2 (Figure 9, 

Manuscript 2, (Chung et al., 2008)). These observations are reflected in the expression of JA-

responsive genes, which are positively regulated by CML37 whereas the presence of CML42 

results in decreased expression levels. In cml37, the expression of OPDA-responsive genes (Taki

et al., 2005; Schäfer et al., 2011) showed the same pattern (Figure 7 and 8, Manuscript 2). 

Summarizing all these observations, CML37 and CML42 clearly show an antagonistic regulation 

upon Spodoptera littoralis herbivory. CML37 strongly enhances plant defense by increase of JA-

responsive gene expression, while CML42 works against this. In previous studies it was shown 

that the level of JA-responsive genes has a strong effect on herbivore feeding (Kanchiswamy et 

al., 2010; War et al., 2012), knock-out of CDPKs 4 and 5 in Nicotiana attenuata also caused 

alterations in anti-herbivore compounds influencing herbivore performance (Hettenhausen et al.,

2013b). A cml37xcml42 double knock-out mutant, which was selected for homozygousity and 

will be available for further experiments, will help to gain more insight into the interplay of these 

antagonistic operating CMLs. A pathway regulation by both positive and negative regulators can 

help to balance the expression of genes and is the basis for a fast adaptation to a changing 

environment. It was shown that regulation of transcription in many eukaryotic systems involves 

both positive and negative regulatory elements, so are for example WRKY transcription factors 

active as positive or negative elements (Johnston et al., 1987; Tsuda and Somssich, 2015).
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Calmodulin-like protein 37 regulates jasmonate accumulation by regulating JAR1 activity

Jasmonate phytohormones are accumulated upon wounding of plant tissue. Genes involved in JA 

biosynthesis are known to be induced by jasmonates, raising the hypotheses that a positive 

feedback loop or jasmonate-induced-jasmonate-biosynthesis exists (Wasternack et al., 2006; 

Wasternack, 2007; Koo et al., 2009; Wasternack and Kombrink, 2010). For tomato (Solanum 

lycopersicum), lima bean, and Nicotiana attenuata leaves it has been shown that such a positive 

feedback loop does not exist for JA accumulation (Koch et al., 1999; Miersch and Wasternack, 

2000; Pluskota et al., 2007). By use of coronalon, a structural mimic of the active JA isoleucine 

conjugate which was able to induce expression of JA-responsive genes (Figure 2 and A1, 

Manuscript S1), it was observed that no accumulation of endogenous jasmonic acid, JA-Ile, nor 

of their hydroxylated metabolites took place (Figure 3 and 5, Manuscript S1). Despite of this, 

application of coronalon without wounding was able to induce the expression of JA-biosynthesis 

genes (Figure 2 and A1, Manuscript S1), indicating a feedback loop on JA-biosynthesis 

enzymes. Simultaneously application of wounding and coronalon showed a much stronger effect 

on gene expression, confirming the importance of tissue damage as major trigger inducing 

jasmonate biosynthesis.

In an additional study investigating the transport of jasmonates in the plant, it was shown that 

7F-OPC-8:0, an analogue of the JA precursor OPC-8:0, was transported into unwounded 

systemic leaves (Figure 6, Manuscript S2). This indicates that even precursors of jasmonates, 

produced upon wounding in the local leaf could be transported to non-wounded systemic leaves 

to initiate a defense response. Such a reaction was shown in tomato and tobacco plants, where 

JA-Ile was transported to non-treated leaves (Sato et al., 2009; Sato et al., 2011), while in 

Nicotiana attenuata no transport was observed (Paschold et al., 2008).

A continuous wounding of plant tissue upon herbivore feeding is causing an accumulation of 

jasmonates (Turner et al., 2002; Devoto and Turner, 2005; Wasternack and Hause, 2013). In 

cml42, the biosynthesis and accumulation of jasmonates upon herbivory were not affected 

(Vadassery et al., 2012a). Interestingly cml37 mutant plants showed additional to low JA-

responsive gene expression a decrease in accumulation of jasmonates after 48h of Spodoptera 

feeding. The accumulation of cis-OPDA and JA-Ile were significantly reduced compared to 

wildtype plants (Figure 4 and S2, Manuscript 2). Surprisingly this effect was more pronounced 



Discussion

111 
 

and earlier visible in the cml37-2 line, which still has 40% of CML37 expression (Figure S5, 

Manuscript 2). The basis for this observation is still not clear. For sure, the decreased elevation 

of phytohormones is another factor contributing to enhanced susceptibility of cml37 plants to 

herbivore feeding. Lack of ability to produce phytohormones upon attack facilitate herbivore 

feeding, as shown for Arabidopsis opr3 mutants (Stintzi and Browse, 2000) or Nicotiana 

attenuata lox mutants (Halitschke and Baldwin, 2003). The level of cis-OPDA itself, although it 

is just a precursor of JA, has also an influence on plant defense. This effect is caused by its

reactive electrophile structure. When ingested by the feeding herbivore, cis-OPDA is isomerized 

in the insect gut to form the less toxic iso-OPDA (Dabrowska et al., 2009; Vadassery et al.,

2012b). Several plant genes like OPR1 and GST1 are also specifically regulated by OPDA and 

are referred to as OPDA-responsive genes (Taki et al., 2005; Schäfer et al., 2011).

cml37 mutants show a reduced accumulation of JA-Ile upon herbivore feeding (Figure 4 and S2, 

Manuscript 2). The respective enzyme conjugating jasmonic acid with isoleucine is JAR1 

(Staswick et al., 2002; Suza and Staswick, 2008). In real-time experiments after herbivore 

feeding, cml37 plants showed a significant reduced accumulation of JAR1 mRNA while non-

treated plants showed the same level like wildtype plants (Figure 6A, Manuscript 2). This 

suggests a positive regulation by CML37. This result is only based on transcriptional data and 

the impact of decrease in mRNA level is not clear. To analyze if the reduced mRNA level is 

reflected in JAR1 activity on protein level, a JAR1 conjugation assay was performed (Staswick 

and Tiryaki, 2004). Here the result could be confirmed; the level of produced JA-Ile in cml37

plant extracts was significantly lower than the one in wildtype plants (Figure 6B, Manuscript 2).

To exclude that other enzymes encoded by the GH3 gene family (Staswick et al., 2005; Terol et 

al., 2006) are able to conjugate Ile with JA in the JAR1 conjugation assay, the assay was redone 

with the jar1 mutant included in the setup (Figure S1, Unpublished results). In jar1, no 

accumulation of JA-Ile was observed, indicating that only activity of JAR1 was measured. Taken 

together, a reduced JAR1 activity was demonstrated for cml37 plants. This probably causes 

lower production of JA-Ile and with this a reduced plant herbivore defense. Whether this reduced 

JAR1 activity is caused by a lower JAR1 protein level or by post-translational modifications is 

not clear and needs to be studied. In Nicotiana attenuata plants it was similarly shown that 

silencing of two JAR1 homologs resulted in decreased herbivore performance (Wang et al.,

2007).
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Calmodulin-like protein 37 connects Ca2+ signaling with jasmonate pathway

Summarizing the results obtained, CML37 regulates the jasmonate pathway by modulating JAR1 

activity (Scholz et al., 2014). To investigate if CML37 could be a possible link between the early 

event calcium and the jasmonate pathway, the biochemical properties of CML37 protein were 

analyzed. To fulfill the function as calcium sensor relay protein, CML37 needs to successfully 

bind calcium followed by a conformational change (DeFalco et al., 2010). In previous studies, 

these properties were analyzed for CML 39, 42 and 43 where all these CMLs showed a real 

calcium sensor activity (Dobney et al., 2009; Bender et al., 2013; Bender et al., 2014). Also 

CML37 positively passed the analysis (Figure1, Manuscript 2). It was shown that upon Ca2+

binding, CML37 undergoes a conformational change indicated by an increase in helical content

about 19% compared to apo-CML37 (Figure1A, Manuscript 2). Also in 8-anilinonaphthalene-1-

sulfonic acid (ANS)-fluorescence spectroscopy a pronounced blue-shift and strong increase in 

fluorescence was observed in the presence of CML37, indicating an increase in surface-exposed 

hydrophobicity due to a conformational change (Figure1B, Manuscript 2). These results 

demonstrate that the possible calcium sensor function, predicted by structure analysis of CML37, 

can be confirmed. Upon Ca2+ binding, CML37 undergoes a conformational change enabling an 

interaction with downstream target proteins. Possible targets of CML37 are not known till now; a

computational study revealed a large number of possible partners (Figure S3, Table S1, 

Supplement). In co-immunoprecipitation analysis, several possible candidates were identified as 

potential interacting partners of CML37 (data not shown), these results still need to be confirmed 

in future studies.

It was shown that upon herbivore feeding, different components in OS trigger the elevation of 

cytosolic calcium (Maffei et al., 2004; Maffei et al., 2007; Maischak et al., 2007; Mithöfer et al.,

2009; Vadassery et al., 2012a). Wounding of the plant tissue, both mechanically and by a 

feeding insect, is able to induce a systemic cytosolic calcium elevation in non-wounded leaves. 

Interestingly application of OS on mechanical-wounded leaves could decrease the intensity of 

the induced systemic cytosolic calcium elevation (Kiep et al., 2015). This observation indicates 

that insect OS contains elicitors which facilitate a bypass of plant defense mechanisms.

To identify the position of CML37 in the signaling cascade, the elicited calcium signal upon 

different stimuli were analyzed in cml37 and wildtype plants. Here OS and different jasmonates 
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were tested in aequorin-expressing Arabidopsis plants that were generated for the questions 

(Figure 5 and S2, Manuscript 2), (Knight et al., 1997). Jasmonates are induced by wounding and 

are one component of OS able trigger cytosolic calcium elevations (Vadassery et al., 2012a; 

Vadassery et al., 2012b). The application of Spodoptera littoralis OS showed similar cytosolic 

calcium elevations in both wildtype and cml37 plants (Figure S2a, Manuscript 2). This suggests a 

position for CML37 downstream of OS-induced Ca2+ signals in the signaling cascade. While the 

application of the active jasmonate JA-Ile induced again similar cytosolic calcium elevations in 

wildtype and cml37 plants (Figure 5 and S2c, Manuscript 2), JA was not able to induce a 

cytosolic calcium elevation in cml37 plants (Figure 5 and S2b, Manuscript 2). This again 

indicates that an altered activity of JAR1 in cml37 plants may be responsible for lower levels of 

jasmonates as well as for a reduced herbivore defense. With this we could show for the first time 

that a calcium sensor - CML37 - is a crucial signaling component connecting Ca2+ and JA 

signaling. In cml42 plants, JA-induced Ca2+ elevations were more sensitive - indicated by a 

higher maximum peak height - but showed the same trend like observed for wildtype plants

(Vadassery et al., 2012a). These results indicate that the early signaling event calcium plays a 

crucial role in activation of jasmonate-based herbivore defense.

Calmodulin-like proteins are involved in ABA signaling

CMLs are also induced by various stress factors originating from the abiotic environment

(McCormack et al., 2005). So it was shown that CML37 is induced by salt, cold, ozone or 

drought stress (Vanderbeld and Snedden, 2007). Drought stress is also occurring during 

herbivore attack, since wounding of the plant tissue and disruption of plant cells causes water 

loss and associated osmotic pressure (Zhu, 2002; Aldea et al., 2005). Interestingly, insect OS is 

able to suppress feeding-induced water loss of Arabidopsis host plants (Consales et al., 2011).

The phytohormone ABA is a major signaling component mediating drought stress in plants 

(Zeevaart and Creelman, 1988). It was shown that several CMLs are involved in ABA signaling; 

CML9 plays an essential role in modulating responses to salt and drought stress as well as ABA

(Magnan et al., 2008). Also CML42, a regulator of herbivory, is involved in drought-induced 

ABA signaling (Figure 9). Here, cml42 plants show enhanced accumulation of ABA after 

different periods of drought treatment (Vadassery et al., 2012a). cml37 plants subjected to 

drought stress, show a drastically reduced accumulation of ABA (at both time points) compared 
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to wildtype and cml42 plants (Figure 2, Manuscript 3). This low level of ABA can be related to a 

high water loss of the plant due to reduced closure of stomata (Leckie et al., 1998). Drought-

stressed cml37 plants, accumulating lower levels of ABA, show a clear phenotype indicating 

water loss. While wildtype and cml42 plants are still vital after 2 weeks of drought, all cml37

plants are dried out (Figure 1, Manuscript 3). This indicates an again antagonistic regulation by 

CML42 and CML37: the signaling of ABA during drought. Keeping in mind that more and more 

evidence occurs that ABA shows activity in modulating herbivore defense (Atkinson and Urwin, 

2012; Dinh et al., 2013; Vos et al., 2013), the low accumulation of ABA in cml37 plants could 

influence herbivore defense. To study this question the expression of CML37 should be analyzed 

in different ABA mutant lines to detect possible cross-effects.

Plant defense is composed of different Ca2+- mediated pathways

As discussed above, calcium plays an important role in activation of different plant defense-

related pathways like the jasmonate pathway. Recent studies suggest that also the accumulation 

-amino butyric acid (GABA) in plants might act as defense mechanism against herbivores 

(Bown et al., 2006). The production of GABA from glutamate is a Ca2+-mediated reaction since 

the catalyzing enzymes GADs (glutamate decarboxylases, Figure 1 and 2, Manuscript 4) are

calmodulin-regulated (Snedden et al., 1995; Zik et al., 1998; Snedden and Fromm, 1999). Upon 

calcium-binding under neutral pH GADs are activated and GABA is produced. Acidifying of the 

cytosol caused by tissue damage and rupture of vacuoles mimicked by MecWorm treatment, can 

induce a calcium-independent activation of GADs ((Figure 6a, Manuscript 4, (Carroll et al.,

1994). During Spodoptera littoralis feeding and associated leaf wounding, GABA accumulates 

in the respective plant tissue (Figure 5a, Manuscript 4). Using different GABA mutant lines it 

was shown that Spodoptera littoralis larvae gain significantly less weight in the mutant line 

which is accumulating high levels of GABA during time (Figure 2 and 3, Manuscript 4). This 

indicates a feeding-deterrent effect of GABA which was already postulated for Choristoneura 

rosaceana larvae, reared on GABA-containing diet, that showed reduced body weight and 

prolonged time to pupation (Ramputh and Bown, 1996). Rearing of Spodoptera littoralis larvae 

on GABA-containing artificial diet showed that a concentration of 1 μmol g-1 GABA reduced 

larval growth significantly (Figure 4, Manuscript 4). This observation is explainable by the 

properties of GABA, which is acting as neurotransmitter activating GABA-inducible Cl--
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channels. An increased level of GABA in the insect leads to hyper-activation of these channels 

eventually initiating paralysis (Bown et al., 2006). The accumulation of jasmonates upon 

herbivore feeding was not altered in different GABA mutant lines (Figure 5 and 6, Manuscript 4) 

and coronalon application did not induce GABA synthesis (Figure 8, Manuscript 4). These 

results show that GABA is a jasmonate-independent defense pathway. Interestingly,

accumulation of GABA is not restricted to the local treated leaf as GABA was detected in 

systemic adjacent leaves (Figure 7, Manuscript 4). This suggests that GABA acts as systemic 

defense against herbivores. Knowing that wounding and herbivory can stimulate a systemic 

increase of cytosolic Ca2+ concentration also in non-wounded leaves (Kiep et al., 2015), this Ca2+

increase could trigger the activity of GADs and induce systemic GABA synthesis demonstrated 

in vitro (Snedden et al., 1995). Summarizing these results, insect herbivory-elicited GABA 

accumulation in plants is a wound-induced, direct, systemic and jasmonate-independent defense 

response mediated by calcium. 

Interestingly, in cml37 mutant plants, the GABA accumulation upon MecWorm treatment and 

Spodoptera littoralis feeding is reduced in local leaf, while application of OS did not show 

significant differences (Figure S2, Unpublished results). This suggests that the effect is caused 

upon mechanical wounding of cml37 plant tissue. The reason for this observation is not known 

and further studies are necessary. However, the preliminary results already indicate that CML37 

might also play a role in herbivory-induced GABA accumulation.

Outlook

The induction pattern of CML37 upon herbivory is still not completely studied, since only the 

response to insects with chewing feeding behavior was investigated. Given the fact that CML37

is induced by both mechanical wounding and OS, the expression pattern will be analyzed in 

plants infested with insects causing only low tissue damage: spider mites (collaboration TU 

Dresden). Here the influence of mechanical wounding is reduced. Additionally, the response to 

spider mites will be studied in different CML knock-out plants, including cml37, cml42 and 

cml9. These studies can provide more information on regulation of CML proteins upon a 

different stress composition. Here, also a double knock-out mutant cml37xcml42 will be 

analyzed. The generated double knock-out mutant cml37xcml42 will be tested in insect feeding 

assays with Spodoptera littoralis larvae and will be characterized for the ability to induce 
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different herbivore defense components including jasmonates and glucosinolates. The study of 

this mutant will help to understand the antagonistic regulation of these two CMLs. 

To complete the knowledge about the mode of action of CML37 and 42, interacting partners of 

both proteins will be further analyzed by co-immunoprecipitation assays. Here stable transgenic 

lines, carrying a tagged CML-protein (CML37-GFP and CML42-Flag) are used. First 

experiments generated some candidates, which need to be proven by further experiments. For 

both CMLs, possible interacting proteins of the ACA family (Ca2+-dependent ATPases) were 

identified. Proteins of this family are transmembrane proteins responsible for active transport of 

Ca2+ ions from the cytosol into different Ca2+ stores (Sze et al., 2000). For CML37, ACA4 

(Geisler et al., 2000) and ACA11 (Lee et al., 2007), two proteins localized in the vacuole 

membrane, were repeatedly found as possible partners. ACA4 was also a candidate found in Co-

IP with CML42 as target protein, next to ACA1 (Malmström et al., 1997), which is located in the 

envelope of chloroplasts (experiment by A. Yilamujiang, (Yilamujiang, 2012)). Thus, all these 

possible interacting partners are involved in recovering the Ca2+ homeostasis after the stimulus 

was perceived. 

All these experiments will help to get insight into the complex regulation and interaction of 

different CMLs upon abiotic and biotic stress. The plant pocesses 50 different CML proteins 

expressed in different plant tissues and during different developmental stages. These studies of 

single cml knock-outs under different conditions can be a useful tool to understand the plants 

need to express this huge amount of calcium sensors to guarantee a proper decoding of 

environmental stimuli and to achieve a proper adaptation to its environment.
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Abstract

Jasmonates are phytohormones involved in development and stress reactions. The most prominent 

jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-

Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding 

genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a 

hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was 

revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which 

excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that 

induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous 

jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of 

jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place 

supporting a post-translational regulation. 
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1. Introduction

In higher plants, low molecular lipid-derived signal molecules are ubiquitously distributed and involved 

in many developmental processes as well as in many different stress-related physiological responses [1-

3]. Fatty acid-derived octadecanoids such as cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) and jasmonic 

acid (JA) are well known examples for the so-called jasmonates, an important class of oxylipin 

phytohormones. -linolenic acid, was first reported by 

Vick and Zimmermann [4]. Today, the whole biosynthetic pathway of jasmonates is elucidated in detail 

including the identification and cloning of all enzymes involved, as described in many reviews [1,2,5,6].

Briefly, biosynthesis of jasmonic acid (JA) takes place in three different cell compartments. In the 

-linolenic acid is released from membranes, activated by a 13-lipoxygenase (13-LOX) to a 

hydroperoxyoctadecatrienoic acid, which is further converted to an unstable epoxide by action of a 13-

allene oxide synthase (13-AOS); followed by an allene oxide cyclase (AOC) catalyzed cyclization to cis-

OPDA. After transport of cis-OPDA into peroxisomes the cyclopentenone ring is reduced by a cis-OPDA 

reductase 3 (OPR3) and subsequently the carboxylic acid side chain is shortened by -oxidation to 

generate (+)-7-iso-JA, which is again released into the cytosol and epimerizes to the less active -JA. It 

is worth to mention that the expression of all genes for JA biosynthesis is inducible by jasmonate 

treatment [7-9], suggesting a jasmonate-induced-jasmonate-biosynthesis. However, only in 2004 it 

became clear that not JA itself but its isoleucine conjugate represents the active phytohormone [10]. This 

conjugation is catalyzed by JASMONATE RESISTANT 1 (JAR1) using (+)-7-iso-JA as the JA substrate 

[10]. As the endogenous bioactive jasmonate (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile, Fig. 1) was 

identified [11]. Strikingly, JA-Ile is the only jasmonate that interacts with the corresponding SCFCOI1-JAZ 

co-receptor complex thereby initiating the jasmonate depending responses in a plant cell [12,13]. In 

detail, upon JA-Ile binding, the COI1-JA-Ile subunit of the SCFCOI1 complex (acting as an E3 ubiquitin 

ligase) interacts with JAZ proteins and forms the whole co-receptor complex [14]; JAZ proteins, acting as 

repressors of jasmonate signaling, are subsequently ubiquitinated and targeted for 26S proteasome-

mediated degradation [2]. This activates transcription factors such as MYC2, subsequently the expression 

of JA-responsive genes and, as a consequence thereof, the onset of defense reactions [2].

Interestingly, coronatine, a bacterial phytotoxin from Pseudomonas syringae consisting of the polyketide 

coronafacic acid and the rare cyclopropyl amino acid, coronamic acid [15], is also able to induce typical 

jasmonate-induced responses. The thereby suggested interaction between coronatine and the JA-Ile co-

receptor complex has already been shown, demonstrating high affinity binding [14]. Because the 

synthesis of coronatine is complex and tedious, alternative compounds exhibiting the same biological 
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activities have been designed and synthesized as structural mimics of coronatine, namely the 6-substituted 

1-oxoindanoyl isoleucine conjugates [16-18]. In particular, a 6-ethyl-indanoyl-isoleucine conjugate (2-

[(6-ethyl-1-oxo-indane-4-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester), coronalon (Fig. 1), has 

been widely tested and established as efficient mimic of various jasmonate-induced responses in plants; 

among others, induction of secondary metabolites, volatiles and defense-related genes in various plant 

species, induction of intracellular calcium transients, pest resistance in field studies, root growth 

inhibition [16,17,19-21], for reviews: [22,23]. Only recently, based on modeling studies it was predicted 

for lima bean (Phaseolus lunatus) that coronalon can directly interact with the COI1-JAZ co-receptor as

well [18].

In the present work we use the JA-Ile mimic coronalon to re-investigate the hypothesis of jasmonate-

induced jasmonate accumulation in plant cells. By studying the effects of exogenous application of 

jasmonates - or their structural mimics like coronalon - it clearly has to be distinguished between a 

feedback loop in terms of activation of JA biosynthesis genes and expression of JA-responsive genes on 

one side, and accumulation of endogenous jasmonates on the other side. This work was motivated by the 

fact that very many reviews on jasmonate biosynthesis suggest a jasmonate-induced-jasmonate-

biosynthesis regulation of JA biosynthesis and accumulation [1,2,24-26] although for tomato (Solanum 

lycopersicum), lima bean, and Nicotiana attenuata leaves it has been shown that such a positive feedback 

loop does not exist for endogenous JA accumulation [27-29]. In addition, for Arabidopsis thaliana leaves 

it has been demonstrated that coronatine application cannot induce JA-Ile accumulation in contrast to 

wounding [30]. Thus, in this study not only both jasmonates, JA and the bioactive JA-Ile, but also their 

first degradation metabolites are investigated in order to discover potential differences in JA versus JA-Ile 

accumulation. Moreover, in addition to earlier studies, the effect of wounding in combination with 

exogenous jasmonate application was studied to address the possibility of additive or synergistic effects 

with respect to jasmonate accumulation.

2. Material and Methods

2.1 Plant material and treatment

Arabidopsis thaliana ecotype Columbia was used for all experiments and plants were grown as 

described before [31]. Four to five week old plants, grown under short-day conditions, were used. For 

wounding, each side of the leaf was treated with a pattern wheel (six vertical motions) followed by an 

immediate application of 10 μL of 50 μM of coronalon or solvent control (0.1 % ethanol) on each side 

(20 μL per leaf). For coronalon spray treatment, plants were sprayed with 1 mL of 50 μM coronalon or 
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solvent control. All plants were incubated for the indicated time points. To minimize evaporation of the 

applied solutions, plants were incubated with a translucent cover. Coronalon was synthesized as described 

[18] -linolenic acid (LA; 18:3), plants were pretreated for 1 h 

with 500 μM LA spray followed by coronalon application and subsequent incubation (with cover) for 1 

and 3 h, respectively. 

2.2 RNA Extraction and Q-RT-PCR

For RNA extraction 100 mg of fresh plant material was used. Samples were homogenized for 1 

minute at 1000 rpm in the Genogrinder 2010 (Spex Sample Prep, Stanmore, UK) and extracted following 

the protocol described before [32]. Q-RT–PCR was carried out in 96-well plates on a Bio-Rad CFX96 

Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, USA) by the use of Brilliant II QPCR 

SYBR green Mix (Agilent, Böblingen, Germany). The obtained mRNA levels of the genes of interest 

were normalized to the RPS18B mRNA level in each cDNA sample and the dissociation curve was 

analyzed for all primer pairs. In the Bio-Rad CFX Manager Software (3.1), expression levels of genes of 

supplementary materials (Table A1).

2.3 Phytohormone analysis

For jasmonate phytohormones and derivatives extraction (jasmonic acid, JA; (+)-7-iso-

jasmonoyl-L-isoleucine, JA-Ile; OH-JA; 12-OH-JA-Ile), 250 mg of fresh plant material was 

used. Samples were homogenized for 1 minute at 1000 rpm in the Genogrinder 2010 (see 2.2), 

extracted and analyzed according to [31]. Briefly, for JA and OH-JA (here we could not 

discriminate 11-OH-JA and 12-OH-JA), 60 ng of 9,10-D2-9,10-dihydrojasmonic acid and for JA-

Ile and 12-OH-JA-Ile 15 ng of jasmonic acid-[13C6]isoleucine conjugate were used as internal 

standards. For chromatography an Agilent 1200 HPLC system (Agilent Technologies, 

Böblingen, Germany) equipped with a Zorbax Eclipse XDB-C18 column (50 x 4.6 mm, 1.8 μm, 

Agilent) was used. For mass spectrometry, in the negative ionization mode, an API 5000 tandem 

mass spectrometer (AB Sciex, Darmstadt, Germany) equipped with a Turbospray ion source was 

employed in MRM modus. Concentration of OH-JA was calculated using 9,10-D2-9,10-
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dihydrojasmonic acid applying a response factor of 1.0; 12-OH-JA-Ile was quantified using 

jasmonic acid-[13C6]isoleucine applying a response factor of 1.0.

3. Results and Discussion

As previously described, JA biosynthesis genes are induced by jasmonates [7,8]. This led to the claim of a 

jasmonate-induced jasmonate accumulation or a positive feedback loop in jasmonate biosynthesis, 

respectively [1,2,24-26]. Strikingly, although it was demonstrated for tomato leaves by feeding deuterated 

precursor and for lima bean, N attenuata and Arabidopsis leaves by treating with jasmonate mimics that 

jasmonate biosynthesis and accumulation was not induced by jasmonates [27-30], these findings are often 

ignored and it was not distinguished between biosynthesis gene induction and jasmonate biosynthesis. 

Therefore, we decided to reinvestigate the hypothesis of jasmonate-induced-jasmonate-biosynthesis using 

coronalon instead of labeled jasmonate precursor. The high biological activity at low concentrations

makes the JA-Ile mimic coronalon a valuable and versatile signaling compound for the induction and 

examination of jasmonate depending responses in plants [17,22]. These features predestine coronalon for 

studies where endogenous level of jasmonates, in particular of JA-Ile, is investigated although 

simultaneously the plant is challenged with exogenously applied jasmonates. Thus, due to the different 

chemical structures (Fig. 1), the risk of endogenous JA-Ile level contamination with exogenous JA-Ile and 

incorrect measurements can easily be ruled out. Recently, a similar approach to directly assess the effect 

of jasmonates without potential secondary effects associated with tissue damage was performed using 

coronatine [33].

In order to ensure that the coronalon treatment was sufficient to induce jasmonate-responsive gene 

expression we chose two different approaches; first, spraying Arabidopsis leaves with 1 mL coronalon 

(50 nmol) and second, wounding of a leaf with a pattern wheel and immediate application with in total 20 

μL of a 50 μM coronalon (1 nmol) solution directly on the small wounds. As shown in Figure 2A, two 

genes involved in jasmonate biosynthesis encoding LOX2 [34] and AOS [35] were upregulated already 

one hour after coronalon spray compared to the spray control. After three hours the induction was lower 

but still detectable. Moreover, the gene for a jasmonate signaling protein, JASMONATE-ZIM DOMAIN 

10 (JAZ10) [36] (Fig. 2B), was inducible and detectable after coronalon spray at both time points as well 

as the defense-related gene encoding vegetative storage protein 2 (VSP2) [37] (Fig 2C). The wounding 

approach showed similar results although it is obvious that gene inductions were much stronger (Fig. 2, 

A1). In particular JAZ10 but also VSP2 expression levels were drastically enhanced (Fig. 2). Here, it is 

worth mentioning that the induction kinetics of early biosynthetic genes is different compared with the 
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late-response gene VSP2. Whereas LOX2 and AOS show higher induction after one hour of treatment, 

VSP2 has its maximum after three hours, representing the expected kinetics (Fig. 2). Based on these 

results we can conclude that both treatments are effective and sufficient to initiate typical jasmonate 

responses in terms of gene expression indicating the practicability of the experimental approach. 

Next, the jasmonate phytohormone content of Arabidopsis leaves which were treated in the same way was 

determined. In contrast to previous studies where either JA or JA-Ile [28-30] was determined, we 

analyzed both jasmonates as well as their inactivation products in parallel. As can be seen in Figure 3, the 

accumulation pattern of both active compounds was similar; only the amount of JA was higher than that 

of JA-Ile, as known from numerous studies performed before. Spaying with coronalon neither induced 

biosynthesis and accumulation of JA nor of JA-Ile within three hours, compared to the controls (Fig. 3) 

and in agreement with findings from Koo et al., 2009 [30]. In contrast to this observation, higher levels of 

JA and JA-Ile were determined upon wounding and wounding plus coronalon application, both after one 

and three hours (Fig. 3). This increase of JA and JA-Ile was not unexpected because many examples 

demonstrated a burst of JA and JA-Ile upon wounding alone [38-42], which was also independent on the 

presence of exogenously applied jasmonates emphasizing the importance of the wounding trauma [30,43].

Consequently, for injured plants, no significant difference in jasmonate levels was found between 

coronalon-treated and water-treated plants (Fig. 3). On the one hand this result indicates that wounding 

alone was responsible and sufficient for JA and JA-Ile accumulation and on the other hand that even an 

additional challenge with another jasmonate could not induce higher levels of the respective compounds. 

Neither an additive nor a synergistic effect was found. Even three hours of coronalon treatment could not 

increase JA and JA-Ile contents, actually the amount declined, although these last results were not 

significant. This excludes the possibility that exogenously applied jasmonate-mimic is taken up only 

slowly and exhibits its activities with delay. The observed gene induction after one hour also supports this 

point of view (Fig. 2). In addition, a rapid appearance of jasmonates within minutes upon wounding was 

shown in local and interconnected leaves in Arabidopsis [40,44]. Strikingly, this increase of jasmonate 

levels was detectable prior to jasmonate biosynthesis gene expression, suggesting that, with respect to 

endogenous jasmonate accumulation, there is no feedback loop necessary. This shows the plants’ ability 

to form jasmonates without preceding gene expression. In earlier studies it was shown that enzymes of 

jasmonate biosynthesis such as LOX and AOS are expressed abundantly in Arabidopsis as well as other 

species [45,46]. Thus, in case of wounding and subsequent release of, for example, LA as biosynthetic 

jasmonate precursor, it is conceivable that the presence of substrates could result in a fast accumulation of 

jasmonates, even before expression of jasmonate biosynthesis genes was significantly induced [1,46,47].

In order to test this possibility, treatment of plants with LA first followed by coronalon was performed 
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with non-wounded leaves. As shown in Figure 4, the presence of LA as biosynthetic precursor was not 

sufficient to generate a significant increase of JA or JA-Ile, respectively. This can be explained with slow 

uptake of the exogenously applied LA that has to enter the plastids to come in contact with LOX which 

starts the initial reaction of jasmonate biosynthesis. This explanation is in agreement with previous studies 

in tomato plants, where accumulation of JA after treatment with LA was shown only after 24 h [48,49].

Complementary results were observed upon LA treatment of rice plants. Here an increase in JA and JA-

Ile production was observed already after 10 min [50]. However, in this particular experiment a LA 

concentration of 50 mM was used, which is quite high and exceeds physiological concentrations in vivo. 

This might result in artificial JA accumulation. However, another explanation is that substrate availability 

alone is not sufficient and further, yet unknown regulation mechanisms and wounding-related signals are 

necessary.   

To further test whether the metabolism of induced jasmonates is extremely fast and the accumulation was 

not detected before JA and JA-Ile are converted into inactive forms, derivatives of both compounds were 

examined. As known for JA-Ile, t -oxidation pathway catalyzed by CYP94B3 and CYP93C1, in 

which JA-Ile is converted to 12-OH-JA-Ile and then further oxidized to 12-carboxy-JA-Ile, is a major 

route for catabolism of the bioactive hormone [51,52]. The occurrence of OH-JA forms in plant tissue is 

also well described [53]. As can be seen in Figure 5, the pattern of OH-derivatives resembles the patterns 

which have been detected for JA and JA-Ile before (Fig. 3). No increase of OH-JA or 12-OH-JA-Ile was 

measured upon treatment with coronalon indicating that no higher non-hydroxylated substrate levels were 

present. The same holds true if LA was supplied alone or in combination with coronalon (Fig. A2). 

It appears clear that in Arabidopsis, N. attenuata and lima bean as well as in tomato [28-30] a positive 

feedback loop for jasmonate-induced jasmonate biosynthesis and accumulation does not exist. This result 

seems somewhat surprising because induction of jasmonate biosynthesis genes was repeatedly 

demonstrated [7-9]. Thus, it is tempting to suggest that the jasmonate biosynthesis might be regulated 

post-translational [30] and enzymes are kept inactive in healthy plants, requiring post-translational events

for their activation. Evidences for post-translational regulation processes of biosynthetic enzyme activities

are already described. For example, in tomato the activity of OPR3 seems to result from a 

monomer/dimer equilibrium including self-inhibition mediated by dimerization [54]. For the enzyme 

AOC homo- and hetero-dimerization was observed, which led at least partially to altered enzyme activity 

[55]. Moreover, substrate availability and tissue specificity might play an additional role in the non-

genomic regulation of jasmonate synthesis [2]. Such post-translational regulation scenarios could also 

explain why transgenic plants, which overexpress jasmonate biosynthetic enzymes, have similar JA levels 

compared to wild-type plants but show increased JA accumulation upon wounding [46].
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More studies addressing crystal structures and the biochemistry of the biosynthetic enzymes will provide 

deeper insights into processes of post-translational modifications and will help to decode the regulation of 

jasmonate biosynthesis. Beyond these aspects, the jasmonate pathway represents a striking example that 

gene expression studies are important tools to understand the regulation of enzymes or pathways but 

without corresponding determination of the final products the interpretation of such data is difficult. Here, 

the often postulated positive feedback regulation for endogenous jasmonate biosynthesis held true for the 

expression of biosynthetic genes but not for the biosynthesis and accumulation of the phytohormones JA 

or JA-Ile. 
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Appendix:

Table A.1. Primers used for RT-PCR.

Fig. A1. Expression of JA-responsive and JA-biosynthesis genes after control treatment.

Fig. A2. Elevation of jasmonates-metabolites after combined linolenic acid (18:3) and coronalon 
treatment.
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Figure legends

Figure 1. Structures of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) and 6-ethyl indanoyl isoleucine 

(coronalon). 

Figure 2. Expression of JA-responsive and JA-biosynthesis genes after coronalon treatment.

Normalized fold expression (± SE, n=6) of AOS and LOX2 (A), JAZ10 (B) and VSP2 (C) after 1 and 3 h 

of coronalon treatment. Gene expression was determined without (grey) or with (black) wounding prior 

to treatment. Expression was normalized to the plant RPS18 mRNA level. For control, the respective 

treatment with water (spraying water; wounding and immediate water application) was used and its 

expression level set = 1.

Figure 3. Elevation of jasmonates after coronalon treatment.

Mean content (± SE, n=6) of JA (A) and JA-Ile (B) after 1 and 3 h of coronalon treatment. Phytohormone 

content was determined without (white stripes and grey) or with (horizontal stripes and black)

wounding prior to treatment. Untreated plants were used as control (0h). No statistical significant 

differences between treatment with/without coronalon for each time point were detected (t-test, p<0.05).

Figure 4. Elevation of jasmonates after combined linolenic acid (18:3) and coronalon treatment.

Mean content (± SE, n=6) of JA (A), JA-Ile (B), after 1 and 3 h of 18:3 and coronalon treatment.

Jasmonates content was determined without wounding prior to spray. Pretreatment with 18:3 was done 
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for 1 h. Untreated plants were used as control (0h ). No statistical significant differences between the

treatments were detected for each time point separately (One Way-ANOVA, SNK-test, p<0.05).

Figure 5. Elevation of jasmonate-metabolites after coronalon treatment.

Mean content (± SE, n=6) of OH-JA (A) and 12-OH-JA-Ile (B) after 1 and 3 h of coronalon treatment.

Phytohormone contents were determined without (white stripes and grey) or with (horizontal stripes 

and black) wounding prior to treatment. Untreated plants were used as control (0h). No statistical 

significant differences between treatment with/without coronalon for each time point were detected (t-

test, p<0.05).

Figure A1. Expression of JA-responsive and JA-biosynthesis genes after control treatment.

Normalized fold expression (± SE, n=6) of AOS and LOX2 (A), JAZ10 (B) and VSP2 (C) after 1 and 3 h 

of water treatment. Gene expression was determined without (white and diagonal stripes) or with 

(horizontal stripes and squares) wounding prior to treatment. Expression was normalized to the plant 

RPS18 mRNA level. Untreated plants were used as control (expression level = 1).

Figure A2. Elevation of jasmonate-metabolites after combined linolenic acid (18:3) and coronalon 

treatment.

Mean content (± SE, n=6) of OH-JA (A), 12-OH-JA-Ile (B), after 1 and 3 h of 18:3 and coronalon 

treatment. Jasmonates content was determined without wounding prior to spray. Pretreatment with 18:3 

was done for 1 h. Untreated plants were used as control (0h) No statistical significant differences between

the treatments were detected for each time point separately (One Way-ANOVA, SNK-test, p<0.05).
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Table A1. Primers used for RT-PCR

Target (Atg number) Sequence

RPS18B (At1g 34030) 5’- GTCTCCAATGCCCTTGACAT -3’

5’- TCTTTCCTCTGCGACCAGTT -3’

JAZ10 (At5g 13220) 5’- TCGAGAAGCGCAAGGAGAGATTAGT -3’ 

5’- AGCAACGACGAAGAAGGCTTCAA - 3’

VSP2 (At5g 24770) 5’- ACGACTCCAAAACCGTGTGCAA -3’

5’- CGGGTCGGTCTTCTCTGTTCCGT -3’

AOS (At5g 42650) 5’- AAGCCACGCGGCGTTTA -3’

5’- GGAGTCTCCGTCTCCGGTCCA -3’

LOX2 (At3g 45140) 5’- ACGCTCGTGCACGCCAAAGT -3’

5’- CCTCAGCCAACCCCCTTTTGA -3’
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Figure A1.
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Figure A2.
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Abstract

Jasmonates are fatty acid derivatives that mediate many developmental processes and stress 

responses in plants. Synthetic jasmonate derivatives (commonly isotopically labeled), which 

mimic the action of the endogenous compounds are often employed as internal standards or 

probes to study metabolic processes. However, tools to evaluate jasmonates’ spatial and temporal 

distribution are yet lacking. In this study we explore whether a fluorinated jasmonate could 

mimic the action of the endogenous compound and therefore, be employed as molecular probe to 

study metabolic processes. We describe the synthesis, the metabolism and the biological activity 

of (Z)-7-fluoro-8-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)octanoic acid (7F-OPC-8:0), a 

fluorinated analogue of the JA-precursor OPC-8:0. Like endogenous jasmonates, 7F-OPC-8:0 

induces the transcription of marker jasmonate responsive genes (JRG) and the accumulation of 

jasmonates after exogenous application to Arabidopsis thaliana plants. By using UHPLC-

MS/MS, we could show that 7F-OPC-8:0 is metabolized in vivo similarly to the endogenous 

OPC-8:0. Furthermore, the fluorinated analogue was successfully employed as a probe to show 

its translocation to undamaged systemic leaves when it was applied to wounded leaves. This 

result suggests that OPC-8:0 –and maybe other oxylipins– may contribute to the mobile signal 

which triggers systemic defense responses in plants. We highlight the potential of fluorinated 

oxylipins to study the mode of action of lipid-derived molecules in planta, either by conventional 

analytical methods or fluorine-based detection techniques.

Keywords

Arabidopsis thaliana; fatty acids metabolism; jasmonate; JA biosynthesis; UHPLC-MS; 

systemic response; signal translocation.
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Highlights 

The synthesis of 7F-OPC-8:0, a fluorinated analogue of OPC-8:0 is described

7F-OPC-8:0 is metabolized similarly to the endogenous jasmonate OPC-8:0

Jasmonate responsive genes and jasmonates accumulation are induced by 7F-OPC-8:0

7F-OPC- -oxidation products can be easily detected by LC-MS/MS

7F-OPC-8:0 is systemically translocated in the plant after wounding stress

Abbreviations: JA, jasmonic acid; cis-OPDA, cis-(+)-12-oxo-phytodienoic acid; JA-Ile, JA-L-

isoleucine conjugate; 7F-OPC-8:0, (Z)-7-fluoro-8-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)octanoic 

acid; OPC-8:0, 8-((1S,2S)-3-oxo-2-((Z)-pent-2-en-1-yl)cyclopentyl)octanoic acid; JRG,

jasmonate responsive genes; FA, fatty acids; LOX, 13-lipoxygenase; AOS, allene oxide 

synthase; AOC, allene oxide cyclase; OPR3, cis-OPDA reductase 3; OPC-6:0, (Z)-6-(3-oxo-2-

(pent-2-en-1-yl)cyclopentyl)hexanoic acid; OPC-4:0, (Z)-4-(3-oxo-2-(pent-2-en-1-

yl)cyclopentyl)butanoic acid; ACX, acyl-CoA oxidase; MFP, multifunctional protein; KAT, L-3-

ketoacyl-CoA thiolase; PET, positron emission tomography; MeJA, methyl jasmonate; 5F-OPC-

6:0, (Z)-5-fluoro-6-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)hexanoic acid; 3F-OPC-4:0, (Z)-3-

fluoro-4-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)butanoic acid; DAST, diethylaminosulfur 

trifluoride; PCC, pyridinium chlorochromate; PPTS, pyridinium p-toluenesulfonate; VSP2,

vegetative storage protein 2; JAZ, jasmonate-ZIM-domain protein; GST1, glutathione-S-

transferase 1;  SCFCOI1, SKP, Cullin, COI1 receptor complex; MRM, multiple reaction 

monitoring; HRMS, high resolution mass spectrometry.



Supplement

157 
 

1. Introduction

Oxylipins are a diverse group of lipid-derived signaling compounds that are present 

throughout the plant kingdom [1]. They are generated following oxidation of polyunsaturated 

fatty acids (FA) such as linoleic acid, linolenic acid, and hexadecatrienoic acid [2, 3]. Jasmonates 

(JAs) are among the best characterized FA derivatives [4]. These metabolites mediate many 

developmental processes and stress responses in plants, including leave senescence, mechano-

sensitive signal transduction, secondary metabolism and plant responses to wounding or 

herbivory [4-7]. Jasmonic acid (JA) is probably the most studied member of the JAs’ family [4].

The JA biosynthetic pathway is well understood and many of the involved enzymes are well 

characterized [8, 9]. It starts in the plastid with the release of linolenic and hexadecatrienoic 

acids from the plastidic glycerolipids. A 13-lipoxygenase (LOX) is capable of oxidizing linolenic 

acid to 13-hydroperoxy linolenic acid (13-HPOT), which can be metabolized to different classes 

of oxylipins (Fig.1) [10]. The conversion of 13-HPOT to 12,13-epoxyoctadecatrienoic acid 

(12,13-EOT) by an allene oxide synthase (AOS) is the main transformation of 13-HPOT. The 

allene oxide cyclase (AOC) acts on 12,13-EOT to produce cis-(+)-12-oxo-phytodienoic acid (cis-

OPDA) stereospecifically, which is the first jasmonate having the cyclopentanone ring and 

remarkable bioactivity. Further conversion of cis-OPDA implies its translocation from the 

chloroplasts to the peroxisomes. There, cis-OPDA reductase 3 (OPR3) reduces cis-OPDA to 8-

((1S,2S)-3-oxo-2-((Z)-pent-2-en-1-yl)cyclopentyl)octanoic acid (OPC-8:0), lacking the highly 

reactive , -unsaturated keto group. Three rounds of -oxidations are required for shortening the 

carboxyl side chain of OPC-8:0 producing OPC-6:0, OPC-4:0 and finally JA in that order (Fig. 

1). The final product of the -oxidations is (3R,7S)-JA (OPC-2:0), that can epimerize to the more 
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stable isomer (3R,7R)-JA [4, 11]. Both isomers co-exist in planta and we refer to them simply as 

JA.
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Fig. 1. Simplified scheme of the biosynthesis and signaling of jasmonates. In the plastids, LA is converted into cis-

OPDA by the sequential action of LOX (a), AOS (b), and AOC (c). (3R,7S)-JA is formed in the peroxisomes by 

OPR3 (d) acting on cis-OPDA followed by three cycles of -oxidation (e). (3R,7S)-JA can epimerize to the more 

stable isomer (3R,7R)-JA. In the cytosol, JA is conjugated to L-isoleucine (Ile) by jasmonic acid-amido synthetase 

(JAR1) to form the bioactive jasmonate JA-Ile (f), which can be subsequently perceived by the SCFCOI1 co-receptor 

complex in the nucleus (g). This last process leads the expression of JRG and jasmonates induced responses. See 

text for detailed explanation and abbreviations. The compounds are shown in the stereochemistry occurring in 

planta.
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Synthetic derivatives of jasmonates have been very helpful to elucidate the structural 

requirements for bioactivity, the biosynthetic and metabolic pathway of jasmonates [12-17].

These compounds, in particular isotopically labeled ones, have proven their utility to study 

transport phenomena in diverse plant species by different techniques (e.g., LC-MS and PET) 

[18]. For instance, after feeding wounded leaves with deuterium-labeled JA, [2H]JA was 

translocated to systemic leaves and metabolized there to its -hydroxylated form 12-OH-JA 

[19]. It was later demonstrated that JA-Ile had a higher mobility than JA despite its lower 

polarity, and application of [2H]JA-Ile to wounded leaves leads to a higher accumulation of JA 

and JA-Ile in distal leaves compared with control plants [20]. The translocation of methyl 

jasmonate (MeJA, 1) was investigated by PET employing [11C]MeJA as a tracer [21]. In this 

study it was claimed that 1 moves in both the phloem and xylem. However, it was shown later 

that the ester group (carrying the [11C]) of MeJA (1) can be cleaved in vivo [22]. Therefore, 

further studies are required revisiting this topic.

Besides isotopically labeled compounds, fluorinated analogues have been widely employed 

to study biological processes. For example fluorinated FAs, provided very useful information on 

the structure-activity relationship, biosynthetic pathways, biological activities and metabolism of 

the target molecules [23, 24]. Fluorinated derivatives of abscisic acid helped to gain insights into 

the biological activity and mechanism of activation and shutdown of this phytohormone [25].

Moreover, fluorine is a monoisotopic element (100% natural isotopic abundance) with a high 

gyromagnetic ratio ( = 40.05 MHz/T). These properties make fluorinated molecules very 

interesting probes to be use in techniques like in HRMS and NMR. Interestingly, the fluorine 

chemistry of jasmonates remains little explored, although a few studies have dealt with 

fluorinated jasmonates. These compounds have shown different biological properties such as 
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tuber-inducing effect in potato [26], anti-tumor action [27], and selective induction of plant 

secondary metabolites [28]. However, to the best of our knowledge, there are no physiological 

studies of fluorinated jasmonates described in the literature.

Herein we cover the biological activity of a fluorinated derivative of the JA-precursor OPC-

8:0, its metabolic fate the plant and the possibility of using this molecule as a probe to follow 

signal-trafficking in planta. We describe the synthesis of 7F-OPC-8:0 (10), explored its 

biological activity by mean of gene expression assays and jasmonate induced profiles after 

exogenous application to Arabidopsis thaliana plants. Furthermore, a UHPLC-MS/MS method 

was developed to identify 7F-OPC-8:0 (10) and its metabolic derivatives in plant leaf extracts. 

This method was further employed to study whether 10 could be systemically translocated in the 

plant.

2. Results and discussion

2.1. Synthesis and characterization of 7F-OPC-8:0 (10)

7F-OPC-8:0 (10) was prepared as a mixture of isomers starting from commercially available 

MeJA (1). The synthesis was carried out according to the procedure depicted in Fig. 2. The 

fluorine atom was introduced at position C7 due to three main reasons (i) the replacement of a 

hydrogen atom by fluorine (similar atomic radius) should not cause steric hindrance or 

stereochemical restrictions in metabolic processes, (ii) to assures the tracking 7F-OPC-8:0 (10), 

5F-OPC-6:0 (11) or 3F-OPC-4:0 (12), and no other JA derivatives when using fluorine-based 

imagine techniques such as PET and MRI, and (iii) the easy chemistry required for the

introduction of the fluorine in that particular position.
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Fig. 2. Synthesis of 7F-OPC-8:0 (10). Reagents and conditions: a) 1,2-ethanediol/C6H6/p-TsOH, reflux; b) 

LiAlH4/Et2O; c) PCC/CH2Cl2/AcONa, 4 Å molecular sieves; d) NaI/Me2CO; e) CH2Cl2/THP/p-TsOH, room temp.; 

f) n-pentane/Et2O (3:2)/t-BuLi, -78 °C; g) DAST/CH2Cl2, -78 °C; h) Me2CO/EtOH/H2O (1:1:1)/PPTS; i) Jones 

reagent (4 M). For abbreviations see the text below.

The synthesis proceeded smoothly with moderate to high yields. Protection of the carbonyl 

group of the cyclopentane ring of 1, followed by reduction of the ester group of 2 with LiAlH4 in 

Et2O, and oxidation of the alcohol 3 with pyridinium chlorochromate (PCC) afforded the 

aldehyde 4 in excellent yield (Fig. 2, steps a-c). Elongation of the side chain of 4 was carried out 

by both Grignard reaction and via the organolithium reagent derived from 6. The second strategy 

was more efficient and provided cleaner products. Treatment of the alcohol 7 with 

diethylaminosulfur trifluoride (DAST) successfully afforded the fluorinated derivative 8, which 

was deprotected without previous purification. Deprotection of both, the carbonyl and hydroxyl 

group of 8 was achieved in one single step by stirring 8 in a solution of Me2CO:EtOH:water 

(1:1:1) containing pyridinium p-toluenesulfonate (PPTS). The fluorine containing alcohol 9 was 

obtained in 38% over two steps. Finally, treatment of 9 with Jones reagent harbored the 
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fluorinated analogue 7F-OPC-8:0 (10) (78%, mixture of isomers). As summary, 10 was obtained 

from MeJA (1) in six major transformations and 8% overall yield.

2.2. 7F-OPC-8:0 (10) induces the expression of JA-responsive genes (VSP2, OPR3, JAZ1) and 

cis-OPDA-responsive genes (GST1, OPR1)

The biological activity of 7F-OPC-8:0 (10) was evaluated through gene expression assays 

and its capability of induce accumulation of jasmonates in A. thaliana plants after exogenous 

application of the compound. Jasmonates coordinate the plant responses to biotic and abiotic 

challenges by the induction of JRG expression, which is mediated by the SCFCOI1-JAZ co-

receptor complex [29]. The activation of JRG is a typical plant response to herbivory [30-32] and 

mechanical wounding [33]. Activation of such genes also occurs after exogenous application of 

several endogenous jasmonates [31, 34]. To evaluate the biological activity of 7F-OPC-8:0 (10), 

A. thaliana plants were sprayed with this compound and the JRG expression was monitored. For 

this purpose two genes, strongly induced by JA were chosen: VSP2 and OPR3 [35]. Both genes 

are highly induced by 7F-OPC-8:0 (10) compared to solvent control, with a maximum peak at 30 

min after treatment (Fig. 3 A,B). This result was consistent with similar analyses carried out with 

endogenous jasmonates [36]. Additionally, the gene coding for the transcriptional repressor of 

JA-signaling, JAZ1 [37], was induced after treatment with 7F-OPC-8:0 (10) (Fig. S1, SI).
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Fig. 3. Mean expression (± s.e., n=5) of JA- (A, B) and cis-OPDA-responsive genes (C, D) in A. thaliana Col-0 after 

treatment with 7F-OPC-8:0 (10) or solvent control. Expression of VSP2 (A), OPR3 (B), GST1 (C) and OPR1 (D) was 

analyzed after 30, 60 and 180 min. All samples were normalized to RPS18B level and untreated plants were used as 

control (expression level = 1). Statistically significant differences were determined between the time points of the 

same treatment and were analyzed by One-Way ANOVA (p < 0.05, SNK test). 

On the other hand, some genes show a specific induction by the JA precursor cis-OPDA and 

are classified as cis-OPDA-responsive genes [35]. Two of which – OPR1 and GST1 – have been 

used as markers for cis-OPDA-responsive gene expression after wounding [38]. These genes are 

also highly upregulated after plant treatment with 7F-OPC-8:0 (10) (Fig.3 C,D). These results 

suggest that 7F-OPC-8:0 (10) induces not only JA-responsive genes, but also genes responding 

specifically to cis-OPDA.

A

C



Supplement

164 
 

2.3. 7F-OPC-8:0 (10) treatment-dependent increase of endogenous jasmonates levels, including 

cis-OPDA levels

The activation of JRG is usually preceded by a transient increase in the internal levels of 

endogenous jasmonates [5]. As mentioned, compound 10 is capable of activating a subset of JRG 

(see section 2.2). Accordingly, we expected that after plant treatment with 7F-OPC-8:0 (10), the 

jasmonates profile would be similar to the profile observed after simulated herbivory, wounding 

or exogenous application of jasmonates. Figure 4 shows the jasmonates profile for a time course 

experiment for A. thaliana plants treated with 10. The concentrations measured for JA, JA-Ile, 

11/12-OH-JA1 and cis-OPDA showed the same trend (e.g. the JA/JA-Ile burst) observed in 

plants after simulated herbivory, JA treatment, or mechanical wounding.

Fig. 4. Mean content (± s.e., n=5) of jasmonate profiles in A. thaliana Col-0 after treatment with 7F-OPC-8:0 (10) or 
solvent control. The content of JA (A), 11/12-OH-JA (B), JA-Ile (C) and cis-OPDA (D) was determined after 30, 60 and 
180 min. Statistically significant differences were determined between the time points of the same treatment and 
were analyzed by One-Way ANOVA (p < 0.05, SNK test). 

                                                           
1 The analytical method does not distinguish between 11-OH-JA and 12-OH-JA

A

C
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This finding suggests that JAs downstream of OPC-8:0 in the metabolic pathway (Fig.1) 

increase their level due to the in vivo metabolized 7F-OPC-8:0 (10). This suggestion agrees with 

that one postulated by Miersch and Wasternack for tomato plants [34]. These authors treated 

tomato leaves with deuterium labeled OPC-8:0 and found that increasing JA and MeJA (1) levels 

were merely due to the metabolism of the deuterated applied compound, which is in line with our 

findings. In the same study, it was shown that the biosynthesis of jasmonates is not induced by 

exogenous treatment with jasmonates. Notwithstanding, we also found somewhat higher 

concentrations of cis-OPDA (1.2 fold) in plants treated with 10 compared to control plants after 

1h (Fig. 4D), although these differences were significant. A possible explanation to this 

observation is that, in A. thaliana, cis-OPDA can be produced from storage sources such as 

arabidopsides. These molecules contain cis-OPDA linked through an ester bond to a glycerol 

moiety [39]. Accumulation of arabidopsides has been reported during hypersensitive response 

and after wounding [40] in A. thaliana. The cleavage of the ester bonds of arabidopsides leads to 

an increase in free cis-OPDA, indicating a function for arabidopsides as storage of signal 

compounds that can prolong the JA signaling [41]. To explore the possibility that arabidopsides 

could be the source for the increase in cis-OPDA level in our experiments, we analyzed the 

content of arabidopside A and B in the leaf extracts. A pronounced depletion of the content of 

arabidopsides A and B was observed at the same time frame in which the increase of cis-OPDA 

level occurred (Fig. S2, SI). This supports that arabidopsides may represent the source for the 

increase in the cis-OPDA. Whether a similar phenomenon is characteristic for the exogenous 

application of endogenous jasmonates needs further investigation. Until here, our data suggest 

that 7F-OPC-8:0 (10) can be metabolized by the plant like a true mimic of the JA precursor 

OPC-8:0.
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2.4. 7F-OPC-8:0 (10) is metabolized in vivo similar to the endogenous OPC-8:0

Next, we addressed the question whether 7F-OPC-8:0 (10) can be metabolized by the plant 

like a true mimic of OPC-8:0, and may represent the source for the increased levels of 

jasmonates downstream to OPC-8:0 in the JA-biosynthetic pathway (Fig. 4). In other words, we 

investigated whether 10 could undergo -oxidations to produce JA.

A LC-MS/MS method was developed to identify 10 and the products resulting from its first 

two -oxidations namely 5F-OPC-6:0 (11) and 3F-OPC-4:0 (12). After the third -oxidation the 

fluorine atom is lost. First, synthetic 10 was employed to fine tune the method in negative 

ionization mode on a Triple-Quadrupole mass spectrometer. The fragmentation pattern of 10

revealed that the molecular ion [M-H]–, together with an intense peak resulting from a HF loss

([M-H-20]–) are the most reliable fragments (Fig. S3, SI). We were able to identify two signals 

corresponding to 11 and 12 in the samples of treated plants, by setting the quadrupole 1 (Q1) to 

[M-H]– and the quadrupole 3 (Q3) to [M-H-20]– in MRM mode. The identity of both peaks was 

corroborated by means of HRMS (Fig. S4, SI). The concentrations found for 11 and 12 showed a 

similar profile to that observed for other jasmonates in this study (Fig.5).
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Fig. 5. Mean content (± s.e., n=5) of the 7F-OPC-8:0 (10) derived metabolites 5F-OPC-6:0 (11) and 3F-OPC-4:0 (12) 

in A. thaliana Col-0 leaves after treatment with 10. The content of 5F-OPC-6:0 (11) and 3F-OPC-4:0 (12) was 

determined after 30, 60 and 180 min. Statistically significant differences were determined between the time points 

of the same treatment and were analyzed by One-Way ANOVA (p<0.05, SNK test). 

Our results show that 7F-OPC-8:0 (10) undergoes at least the first two -oxidation steps 

similar to the endogenous OPC-8:0 in the JA biosynthetic pathway. The presence of the fluorine 

atom does not hamper the oxidative degradation. The first step of the -oxidation mechanism is 

the generation of an enoyl-CoA substrate, which is carried out by the acyl-CoA oxidase (ACX) 

family of enzymes in A. thaliana [42]. This comprises the concerted abstraction of the pro-R- -

hydrogen as a proton (H+) along with the elimination of the corresponding pro-R- -hydrogen to 

the N-5 position of a flavin moiety as a hydride (H–) equivalent [42]. As we employed a mixture 

of isomers of 10 in the bioassays, the last -oxidation step might be inhibited by one of the 

enantiomers of 3F-OPC-4:0 (12). However, we did not detect over-accumulation of this 

particular metabolite beyond the pattern observed for other jasmonates (Fig. 5). Furthermore, we 
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could determine that the content of the endogenous -oxidation product OPC-4:0 remains at its 

constitutive levels in treated plants (Fig. S5, SI). Altogether, these data suggest that the 

exogenously applied 7F-OPC-8:0 (10) serves as biosynthetic precursor for the observed increase 

of the endogenous jasmonates levels (Fig. 4), i.e. no induced biosynthesis of endogenous JA, 

which is in agreement with previous studies [34].

2.5. 7F-OPC-8:0 (10) is systemically translocated in the plant

In response to wounding, plants accumulate jasmonates not only in wounded leaves but also 

in undamaged systemic leaves [5, 20]. Currently it is not clear if this accumulation results from 

the direct transport, the de novo synthesis of the phytohormones or a combination of both events 

initiated by upstream signals [6]. Likewise, it is not well understood whether jasmonates 

including early precursors like OPC-8:0, may function as systemic signals in the plant. 

We employed 7F-OPC-8:0 (10) as a probe to explore the possibility of this molecule being 

translocated and therefore involved in systemic signaling events in A. thaliana plants. The 

vascular connections between leaves are defined in A. thaliana plants [43]. Following the 

nomenclature of Farmer et al. [44], plants were mechanically wounded (pattern wheel) at leaf 8 

of the A. thaliana rosette and 10 was immediately applied to the wounds. The contents of 10 and 

its derived metabolites 5F-OPC-6:0 (11) and 3F-OPC-4:0 (12) were determined in both damaged 

local and undamaged systemic leaves (Fig. 6).
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Fig. 6. Mean content (± s.e., n=11) of 7F-OPC-8:0 (10), 5F-OPC-6:0 (11) and 3F-OPC-4:0 (12) in A. thaliana Col-0 

leaves after wounding and treatment with 10 for 60 min. (A) Content of 10, 11 and 12 in the treated local leaf 8. 

Statistically significant differences between the content of the metabolites were analyzed by One-Way ANOVA 

(p<0.05, SNK test). (B) Content of 10 in systemically connected leaves 5 and 11. Metabolites 11 and 12 were not 

detected in leaves 5 and 11. Statistically significant differences between content of 10 in different leaves were 

analyzed by Mann-Whitney Rank Sum Test (p<0.05, *** p<0.001). 

In correspondence with previous results (Fig.5, section 2.4), 10 and its degradation products 

11 and 12 could be measured in the treated leaf 8 (Fig. 6A). Interestingly, the level of 11 and 12

was higher in the wounded leaf 8 than after application to an undamaged leaf. This could be 

explained by two reasons. On the one hand, the wounding effect can trigger the JA-biosynthesis 

in the damaged leaves [5], and consequently activate the jasmonate’s metabolic machinery 

contributing to the metabolism of 10. On the other hand, compound 10 could be assimilated 

easier through the wounds than when it is sprayed to unwounded tissue. 7F-OPC-8:0 (10) was 

detected both in younger (leaf 11) and older leaves (leaf 5), which are connected to leaf 8 via 

contact parastichies [43]. Leaves 5 and 11 were reported to react systemically when leaf 8 was 

wounded or feed by an insect, even though they don’t share a direct vascular connection with 

A B
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leaf 8 [45, 46]. The content of 10 in leaf 5 was significantly higher than in leaf 11. This is not 

surprising as some differences have been reported in the systemic response of these leaves [45].

The concentrations of 10 found in leaves 5 and 11 are in the same order of magnitude of those 

reported for JA-Ile systemically transported to distal leaves after wounding [5]. These results 

indicate that not only jasmonates but also their precursor OPC-8:0 is transported throughout the 

plant after wounding.

Interestingly, metabolites 11 and 12 were not detected in systemic leaves. A poor detection 

limit of the method employed could explain this; the levels of 11 and 12 in systemic leaves at the 

measured time point may be too low for detection. Therefore, neither a translocation of these 

compounds produced in leaf 8, nor a local synthesis from the translocated 10 can be ruled out. 

Further investigations are needed to clarify these questions. Based on these results, we conclude 

that the accumulation of jasmonates in systemic leaves is not only due to de novo synthesis of the 

phytohormones, but also an effect of the transport of JAs and precursors to the systemic 

undamaged tissue. Our data indicate that transport of OPC-8:0 occurs into older and younger 

leaves suggesting the action of this molecules as a systemic signal in a bidirectional way [43].

3. Conclusions

We developed a short synthesis of 7F-OPC-8:0 (10) – a fluorinated analogue of the JA 

precursor OPC-8:0 – with good overall yield. This compound was shown to be biologically 

active concerning the induction of marker JRG and accumulation of endogenous jasmonates in 

A. thaliana leaves. Furthermore, we were able to detect metabolites 11 and 12 derived from the 

-oxidations of 10 in leaves extracts. As it has been demonstrated that application of jasmonates 

do not induce JA-biosynthesis, this suggests that externally applied jasmonates and analogs are 
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metabolized to downstream JAs activating gene expression. Moreover, it has been demonstrated 

that the fluorinated analogue 10 can be employed as a true mimic of the endogenous jasmonate 

OPC-8:0 in A. thaliana plants. We successfully employed 7F-OPC-8:0 (10) to show its 

translocation from damaged leaves to undamaged systemic leaves. This suggests that the JA 

precursors can also contribute to propagate systemic signals which induce defense responses of 

the plant in distal tissues to damaged area. Our results reveal the potential of the fluorine 

chemistry to study jasmonates – and optionally other phytohormones or plant lipid derivatives –

metabolism and signaling. Plants are the energy source of many herbivorous organisms, 

therefore fluorinated jasmonates may be employed to study the metabolic fate of the fluorinated 

molecule in feeding organisms or even in tri-trophic interactions. Availability of compound 10 

will allow the replacement of the fluorine atom by its radioactive isotope 18F to study transport 

phenomena in real time employing PET.

4. Material and methods

4.1. General material and methods

All chemicals were obtained from commercial suppliers. If necessary, solvents were purified prior to 

use. Thin layer chromatography was performed on silica gel 60 F254 on aluminum plates (Merck) and 

visualized with potassium permanganate staining. Flash chromatography was performed on silica gel 60 

(40-

mentioned otherwise.

GC-MS spectra were recorded on a ThermoQuest CE Instruments GC 2000 Series coupled to a 

ThermoQuest Finnigan Trace MS mass spectrometer; GC column HP-5MS capillary column (15 m × 

0.25 mm ID with 0.25 μm film thickness, Phenomenex).  Injection port: 250 °C; Split flow: 15 ml min-1

with split ratio of 1:10; Temperature program: 60 °C (2 min) at 15 °C min-1 to 280 °C (5 min). Helium at 
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1.5 ml min-1 served as carrier gas. The ionization method was electron impact (70 eV) in positive mode 

(EI+). GC-MS for control of the chemical reactions was carried out on Hewlett Packard Series II, 

equipped with a Phenomenex Zebron ZB-5ms (30 m x 0.25 mm, 0.25 m) column (conditions as 

described above for the Trace MS, but in split-less mode). HRMS (ESI-) for compound 10 was performed

on a Bruker Daltonics - maXis Ultra High ResolutionTOF instrument.

NMR spectra were recorded at 300K either on a Bruker DRX500 spectrometer (operating frequency 

500 MHz for 1H and 125 MHz for 13C) or a Bruker Avance 400 NMR spectrometer (operating frequency 

400 MHz for 1H and 100 MHz for 13C). 1H NMR chemical shifts were referenced relative to the TMS 

signal. As compounds are mostly mixture of isomers, MS and NMR data are reported for the major 

isomer only.

4.2. Synthetic procedures

4.2.1. Methyl (Z)-2-(6-(pent-2-en-1-yl)-1,4-dioxaspiro[4.4]nonan-7-yl)acetate (2):

A 50 ml round-bottomed flask was charged with commercially available MeJA (1) (2.461 g, 

11 mmol), 1,2-ethanediol (0.749 g, 12.1 mmol), dry C6H6 (10 ml), and p-TsOH (0.07 g, catalyst). 

The flask was attached to a Dean-Stark trap, refluxed for 4 h and worked-up. The crude product 

2 (6.118 g; 96.7 %) was employed in the next reaction without purification. GC-MS (EI+):

m/z(%): 41.18(18), 55.03(32), 67.00(38), 85.94(51), 99.00(100), 153.07(64), 195.08(55), 268.22 

[M]+ (36).

4.2.2. (Z)-2-(6-(pent-2-en-1-yl)-1,4-dioxaspiro[4.4]nonan-7-yl)ethan-1-ol (3):

The synthesis was carried as follow. A 100 ml three-necked flask under Ar atmosphere was 

charged with LiAlH4 (1.082 g, 28.5 mmol), dry Et2O (45 ml) and 2 (6.118 g, 22.8 mmol) 

dissolved in dry Et2O (10 ml) was added dropwise. After the addition was complete, the mixture 
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was further stirred for 1.5 h. The reaction mixture was worked-up and evaporation of solvents 

afforded crude 3 (4.687 g; 85%) which was sufficiently pure for further transformation. GC-MS 

(EI+): m/z(%): 55.07(41), 99.20(100), 153.20(35), 195.27(47), 240.31 [M]+ (30).

4.2.3. (Z)-2-(6-(pent-2-en-1-yl)-1,4-dioxaspiro[4.4]nonan-7-yl)acetaldehyde (4):

A 250 ml three-necked flask, equipped with a magnetic stirring bar and pressure-equalizing 

funnel, was purged with argon and charged with dry CH2Cl2 (80 ml), finely powdered PCC 

(11.780 g, 54.6 mmol, 1.5 equiv.), AcONa (0.440 g), and 15 g of 4 Å molecular sieves in 

powder. Compound 3 (8.760 g, 36.4 mmol) dissolved in CH2Cl2 (20 ml) was added dropwise to 

the reaction mixture which was stirred for 4 h (room temp.), and then filtered through a pad of 

Florisil. The filtrate was concentrated on a rotary evaporator, and the residual oil was purified by 

flash chromatography on silica gel (EtOAc/n-hexane, 1:4) to give 4 (6.270 g, 72%) as a colorless 

oil. GC-MS (EI+): m/z(%): 55.12(48), 99.27(100), 153.43(31), 194.60(38), 195.61(45), 238.63 

[M]+ (8). 1H NMR (500MHz, CDCl3): 9.72 (s, 1H), 5.30-5.40 (m, 2H), 3.82-3.93 (m, 4H), 

2.54-2.71 (m, 1H), 2.35 (ddd, J=16.7, 9.5, 2.4 Hz, 1H), 2.12-2.26 (m, 2H), 2.01-2.10 (m, 3H), 

1.92-1.99 (m, 1H), 1.61-1.83 (m, 3H), 1.19-1.33 (m, 1H), 0.94 ppm (t, J=7.6 Hz, 3H); 13C NMR 

(CDCl3, 126MHz): d = 202.2, 132.4, 127.5, 117.4, 64.7, 64.2, 51.3, 49.9, 37.1, 35.2, 28.1, 26.5, 

20.5, 14.1 ppm

4.2.4. 2-((6-iodohexyl)oxy)tetrahydro-2H-pyran (6):

6-iodohexan-1-ol (5) was prepared as described in Ng and Fromherz [47]. Compound 5 was 

obtained as thick yellow oil (2.478 g, 98%) and directly employed in the next reaction. The 

tetrahydropyranyl ether of 5 was prepared by stirring a solution of 5 (2.478 g, 10.86 mmol) and 
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2,3-dihydropyran (4.579 g, 54.44 mmol; 5 equiv.) in CH2Cl2 (50 ml, room temp.) was added p-

TsOH (0.025 g), the mixture stirred for 2 h, and then worked-up. The remaining faintly yellow 

oil was chromatographed on silica gel (n-hexane-EtOAc, 9:1) to afford pure 6 (2.502 g, 74%). 

GC-MS (EI+): m/z(%): 41.34(58), 55.03(99), 83.01(60), 84.74(100), 168.96(15), 311.10(20), 

312.22 [M]+ (4).

4.2.5. (Z)-1-(6-(pent-2-en-1-yl)-1,4-dioxaspiro[4.4]nonan-7-yl)-8-((tetrahydro-2H-pyran-2-

yl)oxy)octan-2-ol (7):

An oven-dried 50 ml flask was charged with 6 (0.500 g, 1.6 mmol) and dry n-pentane/ Et2O

(16 ml, 3:2) under argon atmosphere to give an approximately 0.1 M solution.  All additions 

were performed by using argon-flushed syringes and a positive pressure of argon was maintained 

within the flask during all subsequent operations. The flask was cooled to -78 °C with a dry ice-

acetone bath and t-BuLi (2.2 ml, 1.6 M in n-pentane, ca. 2.2 equiv.) was then added dropwise via 

syringe. Stirring was continued at -78 °C for additional 5 min following the addition, the cooling 

bath was then removed, and the mixture was allowed to warm and stand at room temperature for 

1 h to consume unreacted t-BuLi. Afterwards, aldehyde 4 (0.515 g, 1.5 equiv.) was added 

dropwise and the reaction mixture was worked up. Flash chromatography (n-hexane/Et2O, 1:1) 

afforded 7 (0.305 g, 45%). GC-MS (EI+): m/z(%): 41.20(15), 54.98(27), 85.02(100), 99.04(93), 

153.03(14), 195.02(19), 239.18(5), 339.26(8), 424.35 [M]+ (0.5).
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4.2.6. (Z)-7-(2-fluoro-8-((tetrahydro-2H-pyran-2-yl)oxy)octyl)-6-(pent-2-en-1-yl)-1,4-

dioxaspiro[4.4]nonane (8):

To a solution of DAST (0.090 ml, 0.65 mmol, 1.2 equiv.) in dry CH2Cl2 (0.26 ml) at -78 °C 

was added under Ar a solution of the alcohol 7 (0.207 g, 0.49 mmol) in dry CH2Cl2 (0.1 ml) via 

argon flushed syringe. The solution was stirred at -78 °C for 2 h and 3 h after removal of the 

cooling bath. The reaction mixture was then quenched with saturated K2CO3 and the aqueous 

phase extracted with Et2O (3×10 ml). The combined organic extracts were dried over MgSO4,

filtered, and concentrated under reduced pressure. The crude product 8 was submitted to 

deprotection without further purification. 

4.2.7. (Z)-3-(2-fluoro-8-hydroxyoctyl)-2-(pent-2-en-1-yl)cyclopentan-1-one (9):

Deprotection of 8 was achieved in one step by stirring the compound in a mixture of 

Me2CO/EtOH/water (1:1:1) containing PPTS (0.010 g, 10% of the alcohol). Flash 

chromatography on silica gel (Et2O/n-pentane, 3:2) afforded the desired product 9 (0.055 g, 38 

%, two steps). TLC Rf 0.16. GC-MS (EI+) 9-TFA derivative: m/z(%): 40.68(30), 54.60(26%), 

66.72(19), 82.81(100), 94.80(19), 108.82(19), 123.87(22), 151.00(23), 326.31(3), 394.34 [M]+

(1). 1H NMR (500MHz, CDCl3): 5.30-5.43 (m, 1H), 5.12-5.26 (m, 1H), 3.63-3.71 (m, 1H), 

3.57 (t, J=6.5 Hz, 2H), 2.23-2.36 (m, 3H), 2.06-2.23 (m, 2H), 1.95-2.05 (m, 3H), 1.73 (m, 2H), 

1.45-1.55 (m, 3H), 1.22-1.44 (m, 10H), 0.89 ppm (t, J=7.5 Hz, 3H); 13C NMR (126MHz, 

CDCl3): 219.5, 132.6, 124.4, 68.3, 61.9, 54.1, 41.5, 37.5, 37.0, 36.7, 31.6, 28.4, 26.1, 24.7, 

24.6, 24.3, 19.6, 13.2 ppm.
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4.2.8. (Z)-7-fluoro-8-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)octanoic acid (7-F-OPC, 10):

Jones reagent (4 M) was added to a solution of 9 (0.055 g, 0.18 mmol) in Me2CO (2 ml) at 0 

°C until the color of the reagent persisted. After 30 min at 0 °C, excess of the reagent was 

quenched by addition of 2-propanol. The resulting mixture was filtered through a pad of Celite 

by elution with Et2O and washed several times with brine. The organic solution was dried over 

MgSO4, concentrated under reduced pressure and the remaining oil purified by flash 

chromatography (CH2Cl2-Me2CO, 1:1).  7-F-OPC (10) was obtained in 78 % yield (0.044 g).  

HRMS (ESI--TOF): m/z = 311.2042 [M-H] (calc. for C18H28FO3, 311.2023) 1H NMR (400MHz, 

CDCl3): 5.36-5.54 (m, 1H), 5.17-5.33 (m, 1H), 4.44-4.74 (m, 1H), 2.37 (m, 6H), 1.95-2.19 (m, 

5H), 1.58-1.93 (m, 5H), 1.30-1.56 (m, 6H), 0.96 ppm (t, J=7.5 Hz, 3H); 13C NMR (CDCl3,

101MHz): 213.3, 178.0, 133.9, 125.2, 92.5, 54.9, 40.2, 39.0, 38.1, 38.0, 35.6, 33.6, 28.9, 27.1, 

25.5, 24.5, 20.6, 14.1 ppm

4.3. Plant material and treatments

Arabidopsis thaliana ecotype Columbia was used for all experiments and plants were grown 

as described [30]. Four to five week old plants, grown under short-day conditions were sprayed 

with 0.75 ml (50 μM) of 7F-OPC-8:0 (10) or solvent control (0.125 % ethanol) and incubated for 

the indicated time periods. For investigating the systemic translocation of 7F-OPC-8:0 (10), the 

leaves of five week old plants were numbered according to Farmer et al. [44]. Plants were 

wounded at leaf 8 with a pattern wheel parallel to the midrib as described [30]. A total amount of 

20 μl of 50 μM 7F-OPC-8:0 (10) was applied to the wounds. Leaf 5, 8 and 11 of each plant were 

harvested 60 min after treatment.
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4.4. RNA-isolation and RT-PCR

For RNA isolation, 1 leaf (~ 100 mg) was harvested and stored in liquid nitrogen until use. 

Samples were homogenized with a Genogrinder 2010 (Spex Sample Prep, Stanmore, UK) for 1 

min at 1000 rpm. RNA extraction and cDNA synthesis was performed as described before [32].

Q-RT-PCR was carried out in 96-well plates on a Bio-Rad CFX96 Touch™ Real-Time PCR 

Detection System (Bio-Rad, Hercules, USA) by the use of Brilliant II QPCR SYBR green Mix 

(Agilent, Böblingen, Germany). Analysis of dissociation curve was performed for all primer 

pairs and RPS18B was used as endogenous control for all experiments. The obtained mRNA 

levels of the genes of interest were normalized to the RPS18B mRNA level in each cDNA probe. 

-Rad CFX 

Manager Software (3.1). Untreated plants were used as control (expression level = 1). The 

primer pairs used are listed in supplementary materials (Table S1).

4.5. Quantification of phytohormones

Analysis of phytohormones followed previously described methods with some modifications 

[30]. Finely ground leaf material (250 mg) was extracted with 1.5 ml of methanol containing 60 

ng of [2H6]JA, and 12 ng of JA-[13C6]Ile conjugate as internal standards. The homogenate was 

mixed for 30 min and centrifuged at 13000 rpm for 20 min at 4 ºC and the supernatant was 

collected. The homogenate was re-extracted with 500 μl methanol, mixed and centrifuged and 

the supernatants were pooled. The combined extracts were evaporated under reduced pressure at 

30 ºC and dissolved in 500 μl methanol. Chromatography was performed on an Agilent 1200 

HPLC system (Agilent Technologies). Separation was achieved on a Zorbax Eclipse XDB-C18 

column (50 x 4.6 mm, 1.8 μm, Agilent). Water and acetonitrile containing formic acid (0.05%) 

were employed as mobile phases A and B respectively. The elution profile was: 0-0.5 min, 5% 
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B; 0.5-9.5 min, 5-42% B; 9.5-9.51 min 42-100% B; 9.51-12 min 100% B and 12.1-15 min 5% B. 

The mobile phase flow rate was 1.1 ml min-1. The column temperature was maintained at 25 ºC. 

An API 5000 tandem mass spectrometer (Applied Biosystems) equipped with a Turbospray ion 

source was operated in negative ionization mode. The instrument parameters were optimized by 

infusion experiments with pure standards if available. The ion spray voltage was maintained at -

4500 eV. The turbo gas temperature was set at 700 ºC. Nebulizing gas was set at 60 psi, curtain 

gas at 25 psi, heating gas at 60 psi and collision gas at 7 psi. Multiple reaction monitoring 

m/z -24 V; DP 

-35 V) for jasmonic acid; m/z -24 V; DP -35 V) for [2H6]JA; m/z 322.2 

-30V; DP -50V) for JA-Ile; m/z -30V; DP -50V) for JA-

[13C6 -24 V; DP -45 V) for cis-OPDA. Both Q1 and 

Q3 quadrupoles were maintained at unit resolution. Analyst 1.5 software (Applied Biosystems) 

was used for data acquisition and processing. Linearity in ionization efficiencies were verified by 

analyzing dilution series of standard mixtures. Phytohormones were quantified relative to the 

signal of their corresponding internal standard. For quantification of cis-OPDA, [2H6]JA was 

used as the internal standard applying an experimentally determined response factor of 0.5. 

4.6. Quantification of 7F-OPC-8:0 (10), 5F-OPC-6:0 (11), 3F-OPC-4:0 (12) and endogenous 

OPC-4:0

For the analysis of the fluorinated jasmonate 7F-OPC-8:0 (10) and its -oxidation products, 

5F-OPC-6:0 (11) and 3F-OPC-4:0 (12), the same extracts as for phytohormone quantification 

were used. In the systemic transport study, single leaf extraction was performed. The whole leaf 

material was used and extracted with 1 ml of MeOH containing 40 ng of [2H6]JA, and 8 ng of 
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JA-[13C6]Ile conjugate as internal standards. Following the protocol mentioned above the 

combined, evaporated extract was dissolved in 200 μl MeOH . The following MRMs were added 

to the LC- m/z 0

(collision energy (CE)-20 V; declustering potential (DP) -100 V) for 7F-PC-8:0 (10); m/z 283.0 

-20 V; DP -100 V) for 5F-OPC-6:0 (11); m/z -20 V; DP -100 V) 

for 3F-OPC-4:0 (12); m/z -22 V; DP -120 V) for OPC-4:0. For all four 

compounds, [2H6]JA was used as the internal standard applying a theoretical response factor of 

0.5.

The identity of compounds 11 and 12 was corroborated by LC-HRMS. MS analysis was carried out 

on a LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Measurement 

conditions: ESI negative ionization mode; capillary temperature 275 C, capillary voltage 35 V; full-scan 

mass spectra, mass range of m/z 100 –

(Thermo Fisher Scientific, Waltham, MA, USA) was employed for data interpretation. LC was performed 

on UltraMate 3000 (Thermo Fisher Scientific, Bremen, Germany) equipment. Separation was achieved 

with an Acclaim RSLC C18 column (2.2μm, 2.1 x 150mm; Thermo Fisher Scientific, Bremen, Germany).

Formic acid (0.1%) in water and acetonitrile were employed as mobile phases A and B respectively. The 

elution profile was: 0-15 min, 1-100% B; 15-18 min, 100% B; 18-18.1 min 100-1% B; 18.1-24 min, 1% 

B. The mobile phase flow rate was 0.3 ml min-1. The column temperature was maintained at 25 ºC.

4.7. Relative quantification of Arabidopside A and Arabidopside B

For the quantification of arabidopside A and arabidopside B the same extract as for 

phytohormone analysis were used. Samples were analyzed by LC-MS/MS as for phytohormone 

analysis (see above) with the following modifications: chromatographic gradient was: 0-0.5 min, 

10% B; 0.5-4 min, 10-90% B; 4-7 min 90-100% B; 7-7.5 min 100% B and 7.5-10 min 10% B. 
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An API 3200 tandem mass spectrometer (Applied Biosystems) equipped with a Turbospray ion 

source was operated in negative ionization mode. The following MRMs were used: analyte 

m/z -36 V; declustering potential 

(DP) -30 V) for Arabidopside A; m/z -36 V; DP -30 V) for Arabidopside B. 

Relative quantification is presented as normalized peak area in relation to the internal standard 

[2H6]JA.

Footnotes

Electronic Supplementary Information available: [Fig. S1-S5, primer list (table S1) and copy 

of NMR spectra of important compounds].
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Supplementary Material

Fig. S1 Mean expression (± SE, n=5) of JAZ1 in Arabidopsis Col-0 after treatment with 7F-

OPC-8:0 (10) or solvent control. Expression was analyzed after 30, 60 and 180 min. All samples 

were normalized to the RPS18B level and untreated plants were used as control. Statistically 

significant differences were determined between the time points of the same treatment and were 

analyzed by One-Way ANOVA (p < 0.05, SNK test).
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Fig. S2 Mean relative content (± SE, n=5) of arabidopside A (A) and arabidopside B (B) in 
Arabidopsis Col-0 after treatment with 7F-OPC-8:0 (10) or solvent control.  Measurements at 30,
60 and 180 min. Peak area was normalized to the IS [2H]6JA. Statistically significant differences 
were determined between the time points of the same treatment and were analyzed by One-Way 
ANOVA (p < 0.05, SNK test).

Fig. S3 MS2 spectrum of 7F-OPC-8:0 (10). The fragmentation pattern of 10 reveals the
molecular base peak [M-H]- (311.4 m/z) and a peak produced by the loss of HF ([M-H-20]-,
291.2 m/z) as the most abundant fragments.
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Fig. S4 HRMS spectra of compounds 5F-OPC-6:0 (11) (A) and 3F-OPC-4:0 (12) (B). 

Fig. S5 Mean relative content (± s.e., n=5) of endogenous OPC-4:0 in A. thaliana Col-0 after 
treatment with 7F-OPC-8:0 (10). Measurements at 0 (control plants), 30, 60 and 180 min. Peak 
area was normalized to the IS [2H]6JA. No statistically significant differences were found
between the time points that were analyzed by One-Way ANOVA.
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Table S1. Primers used for RT-PCR.
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1H-NMR Compound (4)
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13C- APT-NMR Compound (4)
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1H-NMR 7F-OPC-8:0 (10)
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13C NMR 7F-OPC-8:0 (10)
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HRESIMS spectrum of 7F-OPC-8:0 (10)
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Protein Interaction Data for CML37 (PAIR database)
 

 

Figure S 3. Computational 
analysis of potential interaction 
partners of CML37 (= CML39).

Shown are the 46 possible 
interaction partners of AT5G42380 
(CML37, CML39) based on 
computational calculation. Data 
were calculated by use of PAIR 
database (http://www.cls.zju.edu. 
cn/pair/home.pair).The ineracting 
partners are listed in Table S1.  

 

 

 

 

Table S 1. Potential interaction partners of CML37 (= CML39) based on computational calculation.                     
Calculation is based on the PAIR database entries (ID numbers). The score is an indicator of the prediction confidence, all scores 
greater than 1 is considered equally confident. In general, the higher the score, the more confident a prediction is
(http://www.cls.zju.edu.cn/pair/home.pair).

ID Partner A Description A Partner B Description B Score

21886 AT5G44290 CML39 CML37 
(CALMODULIN LIKE 
37); calcium ion binding

protein kinase 
family protein

0.187245

23928 AT4G26470 calcium ion binding CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0976034

26868 CML39 CML37 (CALMODULIN 
LIKE 37); calcium ion 
binding

PLC1 PLC1 
(PHOSPHOLIPASE 
C 1); phospholipase 
C

0.201623
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26869 NMAPKK MEK1 (MAP KINASE/ 
ERK KINASE 1); MAP 
kinase kinase/ kinase/ 
protein binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.249989

26870 ATMPK11 ATMPK11; MAP kinase/ 
kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium
ion binding

0.0779014

26871 CML39 CML37 (CALMODULIN 
LIKE 37); calcium ion 
binding

AT5G60300 lectin protein kinase 
family protein

0.116104

26872 SnRK3.23 CIPK23 (CBL-
INTERACTING PROTEIN 
KINASE 23); kinase/ 
protein binding / protein 
serine/threonine kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0253147

26873 CML38 calcium-binding EF hand 
family protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

1.37186

26874 CPK29 CPK29; ATP binding / 
calcium ion binding / 
calmodulin-dependent 
protein kinase/ kinase/ 
protein kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0386109

26875 ATRBOHA ATRBOHA (respiratory 
burst oxidase homolog A); 
calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.283213

26876 ATEHD2 ATEHD2 (EPS15 
HOMOLOGY DOMAIN 
2); GTP binding / GTPase/ 
calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.126341

26877 AT3G47480 calcium-binding EF hand 
family protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0275765

26878 AT4G11890 protein kinase family 
protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.342162

26879 CPK6 CPK6 (CALCIUM-
DEPENDENT PROTEIN 
KINASE 6); ATP binding / 
calcium ion binding / 

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 

0.1144



Supplement

195 
 

calmodulin-dependent 
protein kinase/ kinase/ 
protein kinase/ protein 
serine/threonine kinase

ion binding

26880 AT3G10300 calcium-binding EF hand 
family protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0646465

26881 ATRBOHB ATRBOHB (respiratory 
burst oxidase homolog B); 
FAD binding / calcium ion 
binding / electron carrier/ 
iron ion binding / 
oxidoreductase/ 
oxidoreductase, acting on 
NADH or NADPH, with 
oxygen as acceptor / 
peroxidase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

1.15933

26882 SnRK3.16 CIPK1 (CBL-
INTERACTING PROTEIN 
KINASE 1); kinase/ protein 
binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.00428004

26883 CML39 CML37 (CALMODULIN 
LIKE 37); calcium ion 
binding

PHOT2 PHOT2 
(PHOTOTROPIN
2); FMN binding / 
blue light 
photoreceptor/ 
kinase/ protein 
serine/threonine 
kinase

0.130957

26884 MIRO2 MIRO2 (MIRO-RELATED 
GTP-ASE 2); GTPase/ 
calcium ion binding

CML39 CML37
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0131524

26885 CRK6 CRK6 (CYSTEINE-RICH 
RLK 6); kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0106926

26886 AT1G24620 polcalcin, putative / 
calcium-binding pollen 
allergen, putative

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.117571

26887 CBL3 ATCBL3 (ARABIDOPSIS 
THALIANA 
CALCINEURIN B-LIKE 
3); calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.509189
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26888 CAM5 CAM5 (CALMODULIN 
5); calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.281632

26889 AGC1.5 AGC1.5 (AGC KINASE 
1.5); kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.00121386

26890 CPK19 CPK19; ATP binding / 
calcium ion binding / 
calmodulin-dependent 
protein kinase/ kinase/ 
protein kinase/ protein 
serine/threonine kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0355503

26891 CML39 CML37 (CALMODULIN 
LIKE 37); calcium ion 
binding

AT5G63370 protein kinase 
family protein

0.111101

26892 MAPKKK3 MAP3KA; ATP binding / 
kinase/ protein kinase/ 
protein serine/threonine 
kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0652482

26893 SnRK1.1 AKIN10 (Arabidopsis 
SNF1 kinase homolog 10); 
protein binding / protein 
kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.488322

26894 ATMPK17 ATMPK17; MAP kinase CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.00974092

26895 SCABP8 CBL10 (CALCINEURIN 
B-LIKE 10); calcium ion 
binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.508881

26896 AT1G02270 endonuclease/exonuclease/
phosphatase family protein 
/ calcium-binding EF hand 
family protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.288293

26897 CRK13 protein kinase family 
protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.110216

26898 TCH3 TCH3 (TOUCH 3); 
calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 

0.815963
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ion binding

26899 AT1G71530 protein kinase family 
protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0193371

26900 S6K2 S6K2 (ARABIDOPSIS 
THALIANA 
SERINE/THREONINE 
PROTEIN KINASE 2); 
kinase/ protein kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0906767

26901 MKK2 ATMKK2 
(ARABIDOPSIS 
THALIANA MAP 
KINASE KINASE 2); 
MAP kinase kinase/ kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.355093

26902 SCABP5 CBL1 (CALCINEURIN B-
LIKE PROTEIN 1); 
calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.88678

26903 AT4G14350 protein kinase family 
protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.166672

26904 AT3G01830 calmodulin-related protein, 
putative

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.198228

26905 AT4G03290 calcium-binding protein, 
putative

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.123432

26906 ATEHD1 ATEHD1 (EPS15 
HOMOLOGY DOMAIN 
1); GTP binding / GTPase/ 
calcium ion binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.342258

26907 SnRK1.2 AKIN11 (Arabidopsis 
SNF1 kinase homolog 11); 
protein binding / protein 
kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.275558

26908 AT1G18210 calcium-binding protein, 
putative

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.159541
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26909 CPK24 CPK24; ATP binding / 
calcium ion binding / 
calmodulin-dependent 
protein kinase/ kinase/ 
protein kinase/ protein 
serine/threonine kinase

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0639545

10605
2

AT1G03960 calcium-binding EF hand 
family protein

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.0621032

13850
2

CML39 CML37 (CALMODULIN 
LIKE 37); calcium ion 
binding

CML39 CML37 
(CALMODULIN 
LIKE 37); calcium 
ion binding

0.673265
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